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Abstract

We consider a representation of canonical commutation relations (CCR) appearing in a
(non-Abelian) gauge theory on a non-simply connected region in the two-dimensional
Euclidean space. A necessary and sufficient condition for the representation to be
equivalent to the Schrödinger representation of CCR is given in terms of Wilson loops.
A representation inequivalent to the Schrödinger representation gives a mathematical
expression for the (non-Abelian) Aharonov-Bohm effect. Some aspects of the Dirac-
Weyl operator associated with the representation of CCR are discussed.

AMS classification numbers (1991): 81S05, 81R05, 81Q05, 81Q10, 81Q60

1 Introduction

Let H be a Hilbert space. For a linear operator T on H, we denote its domain by D(T ).
We say that a set {Qj , Pj}d

j=1 of self-adjoint operators on H is a representation of the
canonical commutation relations (CCR) with d degrees of freedom if there exists a dense
subspace D of H such that (i) D ⊂ ∩d

j,k=1[D(QjPk)∩D(PkQj)∩D(QjQk)∩D(PjPk)] and
(ii) Qj and Pj satisfy the CCR

[Qj , Pk] = ih̄δjk,

[Qj , Qk] = 0, [Pj , Pk] = 0, j, k = 1, · · · , d,

on D, where h̄ is the Planck constant divided by 2π.
As is well known, a standard representation of the CCR is the Schrödinger represen-

tation {QS
j , P

S
j }d

j=1 which is given as follows: H = L2(Rd), QS
j = xj (the multiplication

operator by the jth coordinate xj), PS
j = −ih̄Dj (Dj is the generalized partial differential

operator in xj), JD = S(Rd) (the Schwartz space of rapidly decreasing C∞ functions on
Rd) or D = C∞

0 (Rd) (the space of C∞ functions on Rd with compact support).
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In relation to the Schrödinger representation, it is convenient to introduce a techni-
cal term : A set {Qj , Pj}d

j=1 of self-adjoint operators on a Hilbert space H is called a
Schrödinger d-system if there exist mutually orthogonal closed subspaces Hα of H such
that H =

⊕
αHα with the following properties: (i) each Hα reduces all Qj , Pj ; (ii)

the set {Qj , Pj}d
j=1 is, in each Hα, unitarily equivalent to the Schrödinger representation

{QS
j , P

S
j }d

j=1 [21].
Since the pioneering work of von Neumann [19], many studies have been done in

connection with representation theory of CCR (see, e.g., [21] and references therein). A set
{Qj , Pj}d

j=1 of self-adjoint operators on a Hilbert space H is called a Weyl representation
with d degrees of freedom if Qj and Pj satisfy the Weyl relations

eitQjeisPk = e−isth̄δjkeisPkeitQj ,

eitQjeisQk = eisQkeitQj , eitPjeisPk = eisPkeitPj ,

j, k = 1, · · · , d, s, t ∈ R.

The Schrödinger representation {QS
j , P

S
j }d

j=1 is a Weyl representation of CCR. Von Neu-
mann established a uniqueness theorem in the sense that, if H is separable, then every
Weyl representation of CCR with d degrees of freedom is a Schrödinger d-system ([19],
[21]).

It follows from the von Neumann theorem that a Weyl representation is a representa-
tion of CCR. But the converse is not true. Namely, there exist representations of CCR
which are not Weyl ones and hence not Schrödinger systems. Such examples have been
discussed by some authors (e.g., [13], [16], [26], [27] and references therein). These exam-
ples, however, do not seem to have something to do with physics ( with possible exception
[13]).

In what follows, we say that a representation of CCR is an equivalent (resp., inequiv-
alent) representation if it is (resp., not) a Schrödinger system.

Recently H. Reeh found a physically interesting inequivalent representation of CCR
[23] : He considered a quantum system of a charged particle moving in the plane R2 under
the influence of a perpendicular magnetic field concentrated at the origin and showed that,
if the value of the magnetic flux is not in a discrete set, then the representation of CCR
satisfied by the position and the physical (kinetic) momentum operators of the particle is
an inequivalent representation. This inequivalent representation is interesting in that it
may be regarded as a mathematical expression of the Aharonov-Bohm effect [1], although
the quantum system under consideration is an idealized one1.

Motivated by the work of Reeh just mentioned, a systematic mathematical approach
was undertaken to analyze a two-dimensional quantum system of a charged particle with
a perpendicular magnetic field which may be strongly singular at arbitrarily fixed points
a1, · · ·aN in R2 [3]. If the magnetic field is concentrated on the set {an}N

n=1, then the
position and the physical momentum operators of the particle give a representation of
CCR with two degrees of freedom. Mathematical aspects concerning this representation
were clarified, including a complete characterization of the representation in terms of “local

1A characterization of the Aharonov-Bohm effect in terms of representations of local currents is given
in [17]. The author is grateful to Prof. G.A. Goldin for informative comments in this respect.
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quantization” of magnetic flux 2. Moreover, in connection with this work, mathematical
analysis of the Dirac-Weyl operator defined in terms of the physical momentum operator
has been made in some detail [4, 6].

From the view-point of gauge theory, these studies were concerned with an Abelian
gauge theory on the non-simply connected region

M := R2 \ {an}N
n=1. (1.1)

It is natural to ask about that the non-Abelian case is like. This question was pursued in
[5] and some results in the Abelian case have been extended to the non-Abelian case. As in
the Abelian case, if the gauge field strength is concentrated on {an}N

n=1, then the position
and the physical momentum operators of a quantum mechanical particle interacting with
the gauge field give a representation of the CCR with two degrees of freedom. This repre-
sentation is characterized in terms of Wilson loops of the gauge potential. An inequivalent
representation appearing in this case may be regarded as a “non-Abelian Aharonov-Bohm
effect”.

The purpose of the present paper is to give a survey of results obtained in [3] – [5] as
well as some additional new results.

2 Representation of CCR in a gauge theory

We consider a gauge theory on the non-simply connected region M given by (1.1). As the
gauge group, we take the unitary group U(p) of order p (p ≥ 1). Since the Lie algebra
of U(p) is the algebra of p × p anti-Hermitian matrices, which we denote by Mah

p (C), a
gauge potential in the present case is given by an Mah

p (C)-valued 1-form

A(r) := A1(r)dx+A2(r)dy, r = (x, y) ∈M,

on M , where Aj(r), j = 1, 2, are Mah
p (C)-valued functions. We assume that each Aj is

continuously differentiable on M , unless otherwise stated. The gauge filed strength is an
Mah

p (C)-valued 2-form given by

F (A) := dA+A ∧A = F12dx ∧ dy

with
F12 = DxA2 −DyA1 + [A1, A2],

where Dx and Dy are partial differential operators in the distribution sense in x and y,
respectively.

We say that A is flat if F (A) = 0 on M .

Remark : By a theorem in distribution theory, A is flat if and only if there exist a nonneg-
ative integer L and p × p matrices Tα,β

n ∈ Mah
p (C), n = 1, · · · , N, α, β = 0, 1, · · · , L, such

that
2Recently, H.Kurose and H.Nakazato [18] have taken another approach to this subject ; they construct

a ∗-representation of the Weyl algebra with two degrees of freedom induced by a one-dimensional repre-
sentation of the fundamental group of the non-simply connected space M (see (1.1) below) and prove that
the ∗-representation is uintarily equivalent to the ∗-algebra generated by the position and the physical mo-
mentum operators considered in [3]. Their approach can be generalized to the non-Abelian case discussed
below in the present paper.
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DxA2(r)− yA1(r) + [A1(r), A2(r)] =
N∑

n=1

L∑
α,β=0

Tα,β
n Dα

xD
β
y δ(r − an), (2.1)

where δ(r) is the Dirac delta distribution on R2. It is an open problem to find all solu-
tions (up to gauge transformations) to this nonlinear partial differential equations ( or,
equivalently, to give a complete characterization of Mah

p (C)-valued, flat 1-forms) (see §6
for a partial result).

Henceforth, we use a system of units where h̄ = 1. The physical (kinetic) momen-
tum operator P = (P1, P2) of a quantum mechanical particle interacting with the gauge
potential A is given by

P1 = −iDx − iA1, P2 = −iDy − iA2,

acting in L2(R2;Cp), the Hilbert space of Cp-valued square integrable functions on R2.
For an open set D in R2, we denote by Cm

0 (D;Cp) the set of Cp-valued, m times
continuously differentiable functions on D with compact support. We denote by q1, q2
the multiplication operators by x and y, respectively. The following proposition is easily
shown:

Proposition 2.2. Suppose that A is flat. Then {qj , Pj}2
j=1 satisfies the CCR with two

degrees of freedom

[qj , Pk] = iδjk, [qj , qk] = 0, [Pj , Pk] = 0, j, k = 1, 2.

on C2
0 (M ;Cp).

This proposition shows that, if A is flat and each Pj is essentially self-adjoint, then
{qj , P̄j}2

j=1 gives a representation of the CCR with two degrees of freedom, where P̄j

denotes the closure of Pj . Then it is an interesting problem to find a necessary and
sufficient condition for the representation to be a Schrödinger 2-system. To solve the
problem, we first examine if qj and P̄j satisfy the Weyl relations with two degrees of
freedom.

3 Commutation relations of the unitary groups
generated by the position and the physical
momentum operators

Let Mp(C) be the set of p× p complex matrices and B be an Mp(C)-valued, continuous,
piecewise differentiable function on the interval [a, b]. Then one can define the product
integral for B by

b∏
a

eB(τ)dτ := lim
n→∞

eB(tn)(tn−tn−1)eB(tn−1)(tn−1−tn−2) · · · eB(t1)(t1−t0),

where a = t0 < t1 < · · · < tn = b,maxj |tj − tj−1| → 0 (n→∞) [14].
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Let C be a continuous, piecewise differentiable path inM and γ(τ) = (γ1(τ), γ2(τ)), τ ∈
[a, b] (a < b, a, b ∈ R) be a parametrization of it. The Wilson loop of C with a gauge
potential A is defined by

WA(C) := Pe−
∫

C
A :=

b∏
a

e−{A1(γ(τ))γ̇1(τ)+A2(γ(τ))γ̇2(τ)}dτ ,

where γ̇j(τ) = dγj(τ)/dτ, j = 1, 2. It follows that WA(C) ∈ U(p).
We write an = (an1, an2). For t, s ∈ R, let

Rs = R \ {an1, an1 − s|n = 1, · · · , N}, Rt = R \ {an2, an2 − t|n = 1, · · · , N},

and
Ms,t = Rs ×Rt.

For each (x, y) ∈Ms,t, we define a closed path Cx,y;s,t in M by

Cx,y;s,t = {(x+ τs, y)|0 ≤ τ ≤ 1} ∪ {(x+ s, y + τt)|0 ≤ τ ≤ 1}
∪{(x+ s− τs, y + t)|0 ≤ τ ≤ 1} ∪ {(x, y + t− τt)|0 ≤ τ ≤ 1},

which is the rectangle starting from and ending at (x, y) :(x, y) → (x+ s, y) → (x+ s, y+
t) → (x, y + t) → (x, y). With this path, we can define a U(p)-valued function on Ms,t by

WA
s,t(x, y) = WA (Cx,y;s,t) , (x, y) ∈Ms,t.

For each s, t, WA
s,t is continuous on Ms,t. Since the two-dimensional Lebesgue measure

R2 \Ms,t is zero, WA
s,t can be regarded as an almost everywhere (a.e.) finite function on

R2 (with respect to the Lebesgue measure). Hence the multiplication by the function WA
s,t

defines a unique unitary operator on L2(R2;p ). We denote this unitary operator by the
same symbol WA

s,t.
In the rest of this section, we assume the following

Assumption (P) : Each Pj is essentially self-adjoint.3

We have the following result concerning the commutation relations on the unitary
groups generated by P̄1 and P̄2:

Theorem 3.1. For all s, t ∈ R,

eisP̄1eitP̄2 =
(
WA

s,t

)∗
eitP̄2eisP̄1 .

The idea of proof of this theorem is to apply the Trotter-Kato product formula [22,
p.297, Theorem VIII.31]:

eisP̄j = s− lim
n→∞

(
eispj/nesAj/n

)n
,

where s− lim denotes strong limit and p1 = −iDx, p2 = −iDy. See [5] for the details.

Remarks:
(i) Theorem 3.1 may be regarded as a mathematical expression for the (non-Abelian)

Aharonov-Bohm effect.
3A class of gauge potentials satisfying this assumption will be given in §5.
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(ii) Theorem 3.1 is interesting also from an operator-theoretical point of view. L S and
T be self-adjoint operators on a Hilbert space. We say that S and T strongly commute
if their spectral measures commute. A necessary and sufficient condition for S and T to
strongly commute is that for all a, b ∈ R, eiaT eibS = eibSeiaT [22, §VIII.5]. As already
shown (Proposition 2.1), P̄1 and P̄2 commute on C2

0 (M ;Cp), provided that A is flat.
Theorem 3.1 shows, however, that, even in such a case, P̄1 and P̄2 do not necessarily
strongly commute. The case where P̄1 and P̄2 do not strongly commute corresponds to
the Aharonov-Bohm efect.

In the same way as in the proof of Theorem 3.1, we can obtain the following result:

Theorem 3.2. For all s, t ∈ R,

eisqjeitP̄k = e−istδjkeitP̄keisqj , j, k = 1, 2.

Theorems 3.1 and 3.2 imply the following theorem:

Theorem 3.3. The set {eitqj , eitP̄j |t ∈ R, j = 1, 2} of unitary operators satisfies the Weyl
relations with two degrees of freedom if and only if WA

s,t = I for all s, t ∈ R.

As a corollary of Theorem 3.3, we obtain the following:

Corollary 3.4. Suppose that A is flat. Then the representation {qj , P̄j}2
j=1 of CCR is a

Schrödinger 2-system if and only if WA
s,t = I for all s, t ∈ R.

Thus a complete characterization of the representation {qj , P̄j}2
j=1 of CCR is given in

terms of the Wilson loops of the rectangles Cx,y;s,t.
In the Abelian case p = 1, we have

WA(C) = eiΦA(C),

where ΦA(C) := i
∫
C A is the magnetic flux passing through the interior of the loop C.

The condition WA
s,t = I,∀s, t ∈ R, is equivalent to that, for each (s, t), ΦA(Cx,y;s,t) ∈ 2πZ

a.e.(x, y), where Z is the set of integers. In this case we say that the magnetic flux is
locally quantized [3].

As a generalization of this notion to the non-Abelian case, we say that the “gauge
flux” is locally quantized if WA

s,t = I for all s, t ∈ R.

Remark : Suppose that A is flat. Let r0 be any point in M and Cr0 be a loop at r0.
Let [Cr0 ] be the homotopclass of loops at r0 to which Cr0 belongs. Then the mapping
[Cr0 ] →WA(Cr0) gives a p-dimensional unitary representation of the fundamental group
of M (cf.[17, 18]).

4 Condition for the local quantization of the gauge flux

Let Cr
ε (an) be the circle with center an, radius ε > 0 and initial point r (|r − an| = ε)

(the direction is taken to be anticlockwise). We set

δ0 = min
n6=m ; n,m=1,···,N

|an − am|
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Theorem 4.1. The equality WA
s,t = I holds for all s, t ∈ R if and only if A is flat and

there exists a constant δ ∈ (0, δ0) such that, for all ε < δ and some rn with |rn −an| = ε,
WA(Crn

ε (an)) = I, n = 1, · · · , N,.

This theorem can be proven by employing some results in the theory of product inte-
grals [14]. See [5, §3].

By Theorem 4.1 and Corollary 3.4, we obtain the following result:

Theorem 4.2. Suppose that A isf flat and Assumption (P) is satisfied. Then the
representation {qj , P̄j}2

j=1 of CCR is a Schrödinger 2-system if and only if there ex-
ists a constant δ ∈ (0, δ0) such that, for all ε < δ and some rn with |rn − an| = ε,
WA(Crn

ε (an)) = I, n = 1, · · · , N .

5 Essential self-adjointness of the physical
momentum operator

Let Sj = R \ {anj}N
n=1 (j = 1, 2) and

Dm
1 = Cm

0 (R× S2;Cp),Dm
2 = Cm

0 (S1 ×R;Cp), m = 0, 1, 2 · · · .

Definition 5.1. We say that an Mah
p (C)-valued 1-form A is in the class Am if there exist

U(p)-valued functions g1 ∈ Cm+1(R × S2;U(p)) and g2 ∈ Cm+1(S1 ×R;U(p)) such that
A1 = g−1

1 Dxg1, A2 = g−1
2 Dyg2.

Theorem 5.2. Suppose that A ∈ Am−1(m ≥ 1). Then each Pj is essentially self-adjoint
on Dm

j .

Proof : We have Pjψ = g−1
j pjgjψ,ψ ∈ Dm

j and gj is a projection on the space Dm
j . Since

pj is essentially self-adjoint on Dm
j , the desired result follows. 2

Theorem 5.3. Suppose that Aj ∈ Cm(M ;Mah
p (C)) (j = 1, 2) (m ≥ 1) and A = A1dx+

A2dy is flat on M . Then A ∈ Am. In particular, each Pj is essentially self-adjoint on
Dm+1

j .

The idea of proof of this theorem is to decompose R × S2 (resp. S1 ×R) as a union
of simply-connected regions and to use a lemma of the Poincaré type [25] on each simply-
connected region. See [5, Theorem 4.3].

Combining Theorem 5.3 with Theorem 4.2, we obtain the following result:

Theorem 5.4. Suppose that Aj ∈ Cm(M ;Mah
p (C)) (j = 1, 2) (m ≥ 1) and A =

A1dx + A2dy is flat on M . Then each Pj is essentially self-adjoint on Dm+1
j . More-

over, the representation {qj , P̄j}2
j=1 of CCR is a Schrödinger system if and only if there

exists a constant δ ∈ (0, δ0) such that, for all ε < δ and some rn with |rn − an| = ε,
WA(Crn

ε (an)) = I, n = 1, · · · , N .

6 A characterization for a class of flat gauge potentials

Let A be a flat gauge potential on M . We fix a point r0 in M and denote by Cr0,n a loop
at r0 going around an in such a way that the intersection of the interior domain of Cr0,n
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and the set {an}N
n=1 is {an}. Then, for each n = 1, · · · , N , the unitary operator

Un := WA(Cr0,n)

depends only on the homotopy class of Cr0,n. We introduce a class of flat gauge potentials
on M :

Definition 6.1. Let A be a gauge potential on M . We say that A is in the set L0 if A is
flat and [Un, Um] = 0,m, n = 1, · · · , N .

For p × p Hermitian matrices Tn, n = 1, · · · , N , we define Mah
p (C)-valued functions

Bj(·;T1, · · · , Tn), j = 1, 2, by

B1(r;T1, · · · , Tn) = i
N∑

n=1

(y − an2)
|r − an|2

Tn, B2(r;T1, · · · , Tn) = −i
N∑

n=1

(x− an1)
|r − an|2

Tn,

and set
B(r;T1, · · · , Tn) = B1(r;T1, · · · , Tn)dx+B2(r;T1, · · · , Tn)dy. (6.1)

Note that, if [Tn, Tm] = 0,m, n = 1, · · · , N , then B(r;T1, · · · , Tn) is a flat gauge potential.
The following theorem characterizes the class L0:

Theorem 6.2.4 A gauge potential A is in the class L0 if and only if there exist a family
{Tn}N

n=1 of commuting p × p Hermitian matrices and a U(p)-valued, twice continuously
differentiable function g on M such that g(r0) = I and

A = gB(·;T1, · · · , Tn)g−1 − (dg)g−1. (6.2)

Proof: We give only an outline of proof. Let Cr0 be a loop at r0. Then we can show that,
if Tn’s commute each other, then

WB(·;T1,···,Tn)(Cr0) = W−B(Cr0)
−1 = e

2πi
∑

an∈Dr0

knTn

, (6.3)

where Dr0 is the interior domain of the loop Cr0 and kn is the rotation number of Cr0

with respect to an.
Necessity : Let A ∈ L0. Then there exists a family {Tn}N

n=1 of commuting p×p Hermitian
matrices such that

Un = e2πiknTn , n = 1, · · · , N. (6.4)

With these Tn’s, we define a 1-form B := B(·;T1, · · · , Tn) by (6.1). Then, by (6.3), we
have

WA(Cr0) = WB(Cr0).

We denote by Cr
r0

a path from r0 to r in M . The commutativity of Tn’s and Un’s ensures
that

B̃(r) := WA(Cr
r0

)B(r)WA(Cr
r0

)−1

depends only on r. We then introduce

Ãj = Aj − B̃j , j = 1, 2.
4This result has been obtained through joint work with H. Kurose.
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By using a basic theorem in product integration [14, p.21, Theorem 3.2], we can show that

W
Ã
(Cr

r0
) = WA(Cr

r0
)W−B(Cr

r0
),

which implies that the function
g(r) := W

Ã
(Cr

r0
)

depends only on r. With this g we can see that g(r0) = I and (6.2) holds.
Sufficiency: The flatness of A follows from a direct computation and the flatness of

B(·;T1, · · · , Tn). By a theorem on product integration [14, p.21, Theorem 3.2], we have

WA(Cr
r0

) = g(r)WB(Cr
r0

),

which, together with condition g(r0) = I, implies (6.4). Hence A ∈ L0. 2

For A ∈ L0, {qj , P̄j}2
j=1 gives a representation of CCR (Theorem 5.3). On this repre-

sentation we have the following result:

Theorem 6.3. Let A ∈ L0 and Tn, n = 1, · · · , N, be as in Theorem 6.2. Then {qj , P̄j}2
j=1

is a Schrödinger 2-system if and only if, for each n = 1, · · · , N , all the eigenvalues of Tn

are integers.

Proof: We have
WA(εr(an)) = WA(Cr

r0
)e2πiTnWA(Cr

r0
)−1,

which, together with Theorem 5.4, gives the desired. 2

Remark : (i) Let {Tn}N
n=1 be a family of commuting p× p Hermitian matrices and define

A by (6.2) with a function g ∈ C2(M ;U(p)). Then A is flat. If g has no singularity at
an, n = 1, · · · , N , and can be extended to a function in C2(R2;U(p)), then one can show
that A satisfies the following distribution equation (cf. (2.1)):

DxA2 −DyA1 + [A1, A2] = −2πi
N∑

n=1

g(an)Tng(an)−1δ(r − an). (6.5)

If g has singularity at some an’s, then derivatives of the delta functions δ(r − an) may
appear on the right–hand side of (6.5), depending on the form of singularity of g. See [4,
§II] for the Abelian case.

(ii) The class L0 is a special class of flat gauge potentials. It is an open problem to
give a complete (explicit) characterization of general flat gauge potentials.

7 Dirac-Weyl operator

In what follows, the domain D(S + T ) of the sum S + T of two linear operators S and T
on a Hilbert space is always taken to be D(S) ∩D(T ), unless otherwise stated.

Let σj , j = 1, 2, 3, be the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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Let A be an Mah
p (C)-valued, continuously differentiable 1-form on M ( not necessarily

flat). Then the Dirac-Weyl operator with this gauge potential is given by

6D = σ1 ⊗ P̄1 + σ2 ⊗ P̄2

acting in the Hilbert space

C2 ⊗ L2(R2;Cp) = L2(R2;Cp)
⊕

L2(R2;Cp) =

{(
ψ1

ψ2

) ∣∣∣ ψj ∈ L2(R2;Cp), j = 1, 2

}
.

It is easy to see that 6D is a symmetric operator. One of the important problems concern-
ing the operator 6D is to prove its (essential) self-adjointness or to construct self-adjoint
extensions of it. This problem is not so trivial, because the gauge potential A(r) can be
strongly singular at r = an, n = 1, · · · , N . We first present some results on this aspect.

7.1 Self-adjoint extensions of the minimal Dirac operator

Let
6Dmin =6D|C∞

0 (M ;Cp),

the restriction of 6D to C∞
0 (M ;Cp). We call it the minimal Dirac operator. By the reason

mentioned above, one can not expect that 6Dmin is essentially self-adjoint. To construct
self-adjoint extensions of 6Dmin, we take a method used in [7].

We can write

6Dmin =

(
0 D−
D+ 0

)
,

where
D± = P1 ± iP2, D(D±) = C∞

0 (M ;Cp).

It is easy to see that
D+ ⊂ D∗

−, D− ⊂ D∗
+. (7.1)

In particular, D± are closable.

Theorem 7.1. The following operators 6Dj , j = 1, 2, are self-adjoint extensions of 6Dmin:

6D1 =

(
0 D∗

+

D̄+ 0

)
, 6D2 =

(
0 D̄−
D∗
− 0

)
,

where D̄± denote the closures of D±, respectively.

In the case where the gauge flux is locally quantized, we can prove the following
theorem:

Theorem 7.2. Suppose that the gauge flux is locally quantized. Then 6D is a self-adjoint
extension of 6Dmin. Moreover,

6D2 = P̄ 2
1 + P̄ 2

2 . (7.2)

Proof: In the present case, A is flat (Theorem 4.1). Hence each Pj is essentially self-
adjoint on C∞

0 (M ;Cp) (Theorem 5.3). Moreover, P̄1 and P̄2 strongly commute (Theorem
3.3). Hence, applying [8, Theorem 3.4], we conclude that σ1 ⊗ P̄1 and σ2 ⊗ P̄2 strongly
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anticommute5. Hence 6D is self-adjoint and (7.2) holds [29]. It follows from (7.1) that 6D
is an extension of 6Dmin. 2

Remark : The part of self-adjointness of 6D in Theorem 7.2 can also be proven by employing
the fact that, under the present condition, the representation {qj , P̄j}2

j=1 of CCR is a
Schrödinger 2-system (Theorem 3.3).

7.2 Zero-energy states

The zero-energy states of the Dirac operators 6Dj , j = 1, 2, are particularly interesting. We
first note the following fact:

Theorem 7.3. Suppose that the gauge flux is locally quantized. Then ker 6D = {0}.

Proof: Similar to the Abelian case [4, Theorem 4.2]. 2

Remark: In the Abelian case, Theorem 7.3 implies that the Aharonov-Casher theorem
[2], which relates the number of the zero-energy states of the Dirac-Weyl operator with a
regular gauge potential to the total magnetic flux, does not hold in the present singular
case.

In the case where the gauge flux is not necessarily quantized, we proceed as follows.

Lemma 7.4.
ker D̄± = {0}.

Proof: Similar to the proof of [4, Lemma 4.3].

It follows from Lemma 7.4 that

ker 6D1 = {0}
⊕

kerD∗
+, ker 6D2 = kerD∗

−
⊕

{0}.

Thus we need only to identify kerD∗
±. As usual, we denote by z = x + iy the complex

number corresponding to the point r = (x, y). We set

an = an1 + ian2, n = 1, · · · , N.

Theorem 7.5. Let A be of the form (6.2) with g as a U(p)-valued, twice continuously
differentiable function on M and {Tn}N

n=1 be a family of commuting p × p Hermitian
matrices. Let

Ωf,g;T1,···,Tn(r) = g(r)e
∑N

n=1
Tn log |r−an|f(r),

where f is a Cp-valued function on M . Then

kerD∗
+ = {Ωf,g;T1,···,Tn |f∗ is a meromorphic function on C \ {an}N

n=1

with a polynomial order at infinity, e
∑N

n=1
Tn log |r−an|f ∈ L2(R2;Cp)}

kerD∗
− = {Ωf,g;−T1,···,−Tn |f is a meromorphic function on C \ {an}N

n=1

with a polynomial order at infinity, e−
∑N

n=1
Tn log |r−an|f ∈ L2(R2;Cp)}

5Two self-adjoint operators S and T on a Hilbert space are said to strongly anticommute if, for all t ∈ R,
eitST ⊂ Te−itS . See [8, 9, 10, 20, 24, 29] for the general theory of strongly anticommuting self-adjoint
operators and [11] for applications to Dirac-type operators.
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In particular, if (i) N = 1 or (ii) N ≥ 2 and the gauge flux is locally quantized, then
kerD∗

± = {0}.

This theorem is a generalization of [4, Theorem 7] in an Abelian case. The method of
proof is similar to that of the cited theorem. Theorem 7.5 shows that, in the case where
N ≥ 2 and the gauge flux is not locally quantized, the zero-energy state of the Dirac
operators ker 6Dj may be degenerate. See [4] for a detailed anaysis on the degenerate
zero-energy states in the Abelian case.

7.3 Supersymmetric structure

It is easy to see that Γ := σ3 ⊗ I leaves D(6Dj) invariant and

Γ 6Dj+ 6DjΓ = 0 on D(6Dj).

Let
Hj =6D2

j , j = 1, 2.

Then each quadruple {C2 ⊗ L2(R2;Cp),Hj , 6Dj ,Γ} is a model of supersymmetric quan-
tum mechanics ([12], [28, Chapt.5]). By Theorem 7.5, the supersymmetry breaking in
these models depends on whether the gauge flux is quantized or not and hence has an
interrelation to the Aharonov-Bohm effect.

7.4 Strong coupling limit of the zero-energy-state density

In this subsection, we restrict our attention to the Abelian case p = 1. For a constant
q > 0, we define 6Dj(q) (resp. 6D(q) ) to be the operator 6Dj (resp. 6D ) with A replaced by
qA. The zero-energy-state density (ZESD) of 6Dj(q) is defined by

%(j)
q (r) =

dim ker 6Dj(q)∑
k=1

||ψ(j)
k (r)||2

C2 , (7.3)

where {ψ(j)
k }dim ker 6Dj(q)

k=1 is a complete orthonormal system of ker 6Dj(q). The right–hand
side of (7.3) is independent of the choice of complete orthonormal systems of ker 6Dj(q).

As for the ZESD Pq(r) of a self-adjoint extension of 6D(q)|C∞
0 (R2;C2) with a regular

magnetic field
B := DxA2 −DyA1

on R2, the following result is known [15]: for any sequence {qn}∞n=1 with qn →∞ (n→∞),

lim
qn→∞

Pqn(r)
qn

=
1
2π
B(r), a.e. (7.4)

This result, which means that the magnetic field is recovered as a strong coupling limit
of the ZESD, may be regarded as a local form of the Aharonov-Casher result on the
degeneracy of zero-energy states [2]. As already remarked, in the case of singular gauge
potentials considered in the present paper, the Aharonov-Casher result does not hold.
Hence, in such a singular case, we can not expect that (7.4) holds. But it is interesting to
see how the ZESD behaves in the strong coupling limit q →∞ in that case.
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In the Abelian case, (6.2) is the general form of flat gauge potentials on M . In this
case, we can write g(r) = eiφ(r) with φ(r) a real-valued function on M and the quantity
2πTn physically means the magnetic flux at an.

In what follows, we consider only the simplest (but nontrivial) case N = 2 and present
results only for the strong coupling limit of %(2)

q (r) (the other case %(2)
q can be treated

similarly). We assume that
Tν > 0, ν = 1, 2,

and set
εν(q) = qTν − [qTν ], ν = 1, 2,

where [x] denotes the largest integer less than or equal to x. It follows that 0 ≤ εν(q) < 1.
Let

Ωq(r) = eiqφ(r)

(
2∏

ν=1

|r − aν |−qTν (z − aν)[qTν ]

)
.

Lemma 7.6. dim ker ˜6D2(q) = 1 if and only if

ε1(q) + ε2(q) > 1. (7.5)

In that case, the zero-energy state of ˜6D2(q) is given by

(
Ωq(r)

0

)
(up to constant multi-

ples).

Proof: This is a special case of Theorem 7.5 (the case N = 2). 2

Remark: Under condition (7.5), qT1 and qT2 are not integers, i.e, the magnetic flux is not
locally quantized.

Henceforth we consider only the case where (7.5) is satisfied. Under this condition, we
have

%q(r) := %(2)
q (r) =

|Ωq(r)|2

||Ωq||2L2

=
|r − a1|−2ε1(q)|r − a2|−2ε2(q)∫

R2 |r − a1|−2ε1(q)|r − a2|−2ε2(q)dr
. (7.6)

In the present case, the magnetic field is not a function, but a distribution. Hence it is
natural to take the strong coupling limit of %r in the distribution sense. For this purpose,
for each µ, λ ∈ (0, 1) satisfying µ + λ > 1, we define a functional Φµ,λ on L∞(R2) ( the
Banach space of essentially bounded functions on R2) by

Φµ,λ(f) =
∫
R2

f(r)
|r − a1|2µ|r − a2|2λ

dr, f ∈ L∞(R2).

In terms of this functional, the zero-energy-state functional

%q(f) :=
∫
R2

%q(r)f(r)dr

is written as

%q(f) =
Φε1(q),ε2(q)(f)
Φε1(q),ε2(q)(1)

.
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As (7.6) shows, the q-dependence of %q comes only from the factors εν(q), ν = 1, 2. It is
obvious that limq→∞ εν(q) does not exist. But, for suitable monotone increasing sequences
{qn}∞n=1 of positive numbers satisfying

qn →∞ (n→∞), ε1(qn) + ε2(qn) > 1, ≥ 1, (7.7)

the limits
λν := lim

n→∞
εν(qn), ν = 1, 2, (7.8)

may exist, depending on the choice of {qn}∞n=1. For this reason, we discuss the strong
coupling limit of the ZESD according to the magnitude of λν , ν = 1, 2.

We denote by B(R2) the set of bounded continuous functions on R2. Limiting behav-
iors of the functional Φµ,λ in µ and λ are given in the following lemma.

Lemma 7.7.
(i) Let µ0, λ0 ∈ (0, 1) such that µ0 + λ0 > 1. Then, for all f ∈ L∞(R2),

lim
µ→µ0,λ→λ0

Φµ,λ(f) = Φµ0,λ0(f).

(ii) Let λ0 ∈ (0, 1). Then, for all f ∈ B(R2),

lim
µ→1,λ→λ0

(1− µ)Φµ,λ(f) =
πf(a1)

|a1 − a2|2λ0
.

(iii) Let τ > 0. Then, for all f ∈ B(R2)

lim
µ→1

(1− µ)Φµ,(τ−1+µ)/τ (f) =
π

|a1 − a2|2
(f(a1) + τf(a2)).

Proof. See [6]. 2

A simple application of Lemma 7.7 to %q(f) gives the following result.

Theorem 7.8. Let {qn}∞n=1 be a sequence satisfying (7.7) and (7.8).
(i) Suppose that λ1, λ2 ∈ (0, 1) such that λ1 + λ2 > 1. Then, for all f ∈ L∞(R2),

lim
n→∞

%qn(f) =
Φλ1,λ2(f)
Φλ1,λ2(1)

.

(ii) Suppose that λ1 = 1, λ2 ∈ (0, 1). Then, for all f ∈ B(R2),

lim
n→∞

%qn(f) = f(a1).

(iii) Let τ > 0 and suppose that, for all sufficiently large n, 1− ε1(qn) = τ(1− ε2(qn))
and λ1 = 1 (hence λ2 = 1). Then, for all f ∈ B(R2),

lim
n→∞

%qn(f) =
f(a1) + τf(a2)

1 + τ
.

Remark. One can eaily find examples of {qn}∞n=1 for each case in Theorem 7.8.

As a corollary, we obtain the folloiwng:
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Corollary 7.9. Let {qn}∞n=1 be a sequence satisfying (7.7) and (7.8). Then, for all cases
(i)–(iii) in Theorem 7.8,

lim
n→∞

%qn(f)
qn

= 0, f ∈ B(R2).

This result shows, as expected, that the Erdös’ theorem [15] does not hold in the
present case.

In a special case of part (iii) of Theorem 7.8, a strong coupling limit of the ZESD
recovers the magnetic field :

Corollary 7.10. Let {qn}∞n=1 be a sequence satisfying (7.7) and (7.8) with λν = 1, ν =
1, 2. Suppose that, for all sufficiently large n, T1(1− ε1(qn)) = T2(1− ε2(qn)). Then,

lim
n→∞

(T1 + T2)%qn(r) = T1δ(r − a1) + T2δ(r − a2) (7.9)

in the distribution sense. In particular, if φ is a twice continuously differentiable function
on R2, then

lim
n→∞

(T1 + T2)%qn(r) =
1
2π
B(r) (7.10)

in the distribution sense.

Proof. Formula (7.9) follows from a simple application of part (iii) of Theorem 7.8
with τ = T2/T1. If φ satisfies the assumption, then

B = 2π[T1δ(r − a1) + T2δ(r − a2)].

Hence (7.10) follows. 2
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