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Abstract

In part I of this article we define the Grothendieck dessins and recall the description
of the Grothendieck correspondence between dessins and Belyi pairs (X,β) where X is a
compact connected Riemann surface and β : X → P1C is a Belyi morphism. In part II
we discuss the action of Gal(Q/Q) on dessins and show that it is faithful on genus 0 and
genus 1 dessins, and on trees. In part III we consider the genus zero case, i.e. dessins on
the Riemann sphere. Given a dessin D on P1C, we discuss the explicit association of a
rational Belyi function to a genus zero dessin and vice versa. In IV we give a few basic
examples.

*

I. The Grothendieck correspondence

The aim of this section is to define the Grothendieck dessins and use Belyi’s theorem
to give a description of the bijection between the set of isomorphism classes of dessins
and the set of isomorphism classes of algebraic curves defined over Q. The ideas in this
first section originate in Grothendieck’s unpublished paper [G]: it was he who suggested
the possibility of associating an algebraic curve defined over Q to a cellular map on a
topological surface, and remarked that all algebraic curves over Q can be obtained in this
way as a consequence of Belyi’s theorem, which we state and prove below although it is
already well-known. All of the material in this first section is essentially already known,
however we provide it here for reference.

I would like express my warmest gratitude to G. Shabat who explained much of the
material in section I to me, as well as his own ideas (see section III, §2). Further thanks
are due to R. Nauheim and R. Dentzer for introducing me to the Gröbner basis algorithm.
Particular thanks are due to H. W. Lenstra, Jr. for help with theorem II.4. Finally, I am
grateful to Jean-Marc Couveignes, Pierre Lochak and Gunter Malle for many interesting
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discussions and suggestions. Needless to say, the inspiration for this work is entirely due
to A. Grothendieck.

§1. Algebraic curves defined over Q

Let X be an algebraic curve defined over C. We recall that via a (non-trivial) classical
theorem, X is defined over Q (i.e. possesses a model defined over Q) if and only if there
exists a non-constant holomorphic function f : X → P1C all of whose critical values lie in
Q.

Denote by π1 the fundamental group of P1C− {0, 1,∞}, generated by loops l0, l1

and l∞ around 0, 1 and ∞, with the relation l0l1l∞ = 1. The following lemma is entirely
classical:

Lemma I.1: There is a bijection between the conjugacy classes of subgroups of finite index
of π1 and isomorphism classes of finite coverings X of P1C ramified only over 0, 1 and ∞.

Let B be a subgroup of finite index of π1 and let X̃ be the universal covering of
P1C− {0, 1,∞}. We recall that the correspondence is based on the identification of the
quotient space B \ X̃ with an unbranched cover X ′ of P1C− {0, 1,∞} of degree [π1 : B],
where the morphism f of X ′ to P1C− {0, 1,∞} is given by quotienting by the action of
π1. Note that considering f as an analytic map on X equips X with a unique analytic
structure. A classical theorem (see Forster [F] Thm. 8.4 for example) shows that the
unbranched cover f : X ′ → P1C− {0, 1,∞} can be extended to a branched cover of P1C,
in a unique way up to biholomorphic fiber-preserving maps from X ′ into itself. We note
that the ramification indices over 0, 1 and ∞ are given by the lengths of the orbits in π1/B

under the action of l0, l1 and l∞ respectively. Let us denote by e1,li , . . . , eki,li the orbit
lengths for i = 0, 1,∞. Then we recall that the degree d of the covering is given by the
index d = [π1 : B] and the genus g of X is given by Hurwitz’s formula

2g − 2 = −2d +
∑

i∈{0,1,∞}

ki∑

j=1

(ej,li − 1).

Let π′1 = π1/〈l21〉. Then we have the following as an immediate consequence of lemma
I.1:

Corollary: There is a bijection between the conjugacy classes of subgroups of finite index
of π′1 and the isomorphism classes of coverings of P1C ramified only over 0, 1 and ∞, such
that the ramification over 1 is of degree at most 2.
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Dessins d’enfants 3

We now give the theorem which is essential to the description of the Grothendieck
correspondence given in §3, Belyi’s theorem characterizing algebraic curves defined over Q
(see [B]).

Theorem I.2: Let X be an algebraic curve defined over C. Then X is defined over Q if
and only if there exists a holomorphic function f : X → P1C such that all critical values
of f lie in the set {0, 1,∞}.
Proof: Clearly, if there exists such a morphism (called a Belyi morphism) X is defined over
Q. Suppose now that X is defined over Q, and let g : X → P1C be such that all critical
values of g lie in Q. We first construct a morphism h : X → P1C all of whose critical
values lie in Q. Let S be the set of all critical values of g and all their conjugates under
Gal(Q/Q). Set f0(z0) =

∏
s∈S(z0 − s) ∈ Q[z0], and set

fj+1(zj+1) = Reszj

(
dfj

dzj
, fj(zj)− zj+1

)
.

By construction, the roots of fj+1 are exactly the finite critical values of fj . All the
fj are defined over Q and their degrees decrease successively until for some n we have
deg(fn) = 0 (we note that what is happening here is a concentration of the ramification of
the original function at ∞ via successive compositions with well-chosen polynomials). Set
h = fn−1 ◦ fn−2 ◦ · · · ◦ f1 ◦ f0 ◦ g. Then the critical values of h are contained in Q, as can
be easily seen by induction using the formula Cg1◦g2 = Cg1 ∪ g1(Cg2), where Cg denotes
the set of critical values of g. Denote by S′ ⊂ Q the set of finite critical values of h.

If |S′| ≤ 3, a linear fractional transformation suffices to take its elements onto a subset
of {0, 1,∞}. Suppose |S′| > 3. Choose three ordered points of S′: then we can always
find integers m and n such that they go to 0, m/(m + n) and 1 by a linear fractional
transformation. Then the transformation

z 7→ (m + n)(m+n)

mmnn
zm(1− z)n

transforms both 0 and 1 to 0, and m/(m + n) to 1. In this way we obtain a morphism
whose set of critical values has cardinal less than or equal to |S′|−1 (and which contains 0
and 1). Repeating the procedure a finite number of times produces an explicit morphism
from X to P1C having set of finite critical values contained in {0, 1}. ♦

Definition 1: A morphism β : X → P1C all of whose critical values lie in {0, 1,∞} is
called a Belyi morphism. We call β a pre-clean Belyi morphism if all the ramification
orders over 1 are less than or equal to 2, and clean if they are all exactly equal to 2. We
will see that a dessin corresponding to a pre-clean Belyi function has the visually agreeable
property that it has exactly one edge corresponding to every pre-image of 1 under β; a
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dessin corresponding to a clean Belyi function has a vertex at both ends of every edge. We
also use the words pre-clean and clean to describe the dessins.

Corollary (to theorem I.2): An algebraic curve defined over C is defined over Q if and
only if there exists a clean Belyi morphism β : X → P1C.

Proof: If α : X → P1C is a Belyi morphism, then β = 4α(1− α) is a clean one. ♦

If X is an algebraic curve defined over Q and β is a Belyi morphism on it, we call the
couple (X,β) a Belyi pair. Two Belyi pairs (X,β) and (Y, α) are said to be isomorphic if
there is an isomorphism φ : X → Y such that β = α ◦ φ. If β is clean we call (X, β) a
clean Belyi pair.

§2. Dessins d’enfants

Grothendieck [G] gives a sketch of an exploration of the connections between algebraic
curves defined over Q and their fields of definition, and what he calls “dessins d’enfants”,
which might be conveniently described as scribbles on topological surfaces. the precise
definition here.

Definition 2: A Grothendieck dessin is a triple X0 ⊂ X1 ⊂ X2 where X2 is the topological
model of a compact connected Riemann surface, X0 is a finite set of points, X1 \X0 is a
finite disjoint union of segments and X2 \X1 is a finite disjoint union of open cells, such
that a bipartite structure can be put on the set of vertices X0; namely the vertices can
be marked with two distinct marks in such a way that the direct neighbors of any given
vertex are all of the opposite mark.

Definition 3: Two dessins D = X0 ⊂ X1 ⊂ X2 and D′ = X ′
0 ⊂ X ′

1 ⊂ X ′
2 are isomorphic

if there exists a homeomorphism from X2 into X ′
2 inducing a homeomorphism from X1

into X ′
1 and one from X0 into X ′

0. We sometimes use the terminology abstract dessin for an
isomorphism class of dessins. This indicates that the structure of the dessin is determined,
but it is not associated with any particular embedding into a complex topological surface.

Because of the corollary given above, in studying the correspondence of Belyi pairs to
dessins we may restrict ourselves to the clean dessins as does Grothendieck in [G]; we then
have the simpler definition

Definition 2’: A pre-clean Grothendieck dessin is a triple X0 ⊂ X1 ⊂ X2 where X2 is the
topological model of a compact connected Riemann surface, X0 is a finite set of points,
X1 \X0 is a finite disjoint union of segments and X2 \X1 is a finite disjoint union of open
cells.
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Dessins d’enfants 5

In this definition it is to be understood that all vertices in X0 are considered to have
the same “mark”, and somewhere on each edge is a vertex of the opposite mark (it can be
anywhere on the edge, even on the end if the edge is a tail, as long as it does not coincide
with any of the vertices in X0); this puts a natural bipartite structure on the dessin.

In order to prepare the ground for the Grothendieck correspondence, we need to
introduce the flag set of a pre-clean dessin and the action of the cartographical group on
it.

Definition 4: A marking on a pre-clean dessin is a fixed choice of one point on each
component of X1 \X0, and one point in each open cell of X2 \X1. We will always use the
notation • for a point in X0, ? for a point in X1 \X0 and ◦ for a point in X2 \X1.

Definition 5: Let D be a pre-clean dessin with a fixed marking. Then the flag set F (D)
of D is the set of triangles whose three vertices are marked •, ? and ◦ in such a way that
• is in the closure of the segment containing ?, and that segment is in the closure of the
open cell containing ◦. The oriented flag set F+(D) is the set of flags the order of whose
vertices is ◦ − • − ? when read counterclockwise.

Definition 6: The cartographical group C2 is given by three generators σ0, σ1 and σ2

together with the relations σ2
0 = σ2

1 = σ2
2 = 1 and (σ0σ2)2 = 1. The oriented cartographical

group C+
2 is the subgroup of index 2 of C2 given by all even words of C2. A generating set

is given by ρ0 = σ1σ0, ρ1 = σ0σ2 and ρ2 = σ2σ1, with the relations ρ2
1 = 1 and ρ0ρ1ρ2 = 1.

The generators σ0, σ1 and σ2 of the group C2 act on F (D) as follows: if F is a flag
given by

then σ0(F ), σ1(F ) and σ2(F ) are given by

If we restrict our attention to the oriented flags, it suffices to denote them by a vertex
• and an edge, since given the • point and the ? edge point of an oriented flag, the position
of the ◦ open cell point is determined. Given an oriented flag F , we deduce from the action
of σ0, σ1 and σ∞ on it that the flags ρ0(F ), ρ1(F ) and ρ2(F ) are given by
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which completely describes the action of C+
2 on F+(D) (note that we consider the elements

of C2 as acting on the left, so that in ρ0 = σ1σ0, for instance, σ0 acts first). We usually
consider only the set F+(D) of positively oriented flags. In this set there are exactly two
flags for each edge of the dessin. It is clear that, viewed as a set together with the action of
a certain group C+

2 , the set F+(D) is independent of the marking on D: in fact it depends
only on the abstract dessin which is the isomorphism class of D. Indeed, considering only
the oriented flag set makes the marking unnecessary since each flag is exactly equivalent
to giving one vertex and one specific edge coming out of it.

Lemma I.3: Let D be a pre-clean dessin and F ∈ F+(D) a fixed flag. Let BF,D be the
set of elements of C+

2 fixing F . Then BF,D is a subgroup of finite index in C+
2 and the

stabilizing subgroup BF ′,D for any other flag F ′ ∈ F+(D) is conjugate to BF,D in C+
2 .

Moreover BF,D depends only on the abstract dessin D.

Proof: The orbit of F under C+
2 is necessarily finite since F (D) is finite, thus BF,D is

of finite index. Let F ′ ∈ F (D) be different from F . Then by applying the different
transformations in C+

2 one can construct an element σ ∈ C2 such that σ(F ) = F ′, so it is
clear that BF ′,D = σ−1BF,Dσ. ♦

The following theorem is due to Malgoire-Voisin [MV] (and similar results appear in
work of Jones and Singerman, cf. [JS]).

Theorem I.4: There is a bijection between the isomorphism classes of clean dessins and
the conjugacy classes of subgroups of C+

2 of finite index.

Proof: By lemma I.3, we can associate to an abstract dessin a conjugacy class of subgroups
of finite index of C+

2 . We now let B be a subgroup of C+
2 of finite index and show how to

entirely reconstruct a unique dessin from it. It will be a direct consequence of that argument
that the two directions correspond and that changing the subgroup to a conjugate subgroup
is the only way to obtain an isomorphic dessin.

Let B be considered as a subgroup of finite index of C2. Let H = C2/B denote the
coset space. We will construct a dessin D whose flag set F(D) will be bijective to H (so
F+(D) will be bijective to C+

2 /B), and such that the action of C2 on F(D) is given by
the action of C2 on H by left multiplication. The flag corresponding to the coset B will
be fixed by the action of B. The elements σ0, σ1 and σ2 ∈ C2 all act on H, dividing its
elements into orbits. From the action of these elements, it is clear that two cosets, i.e. two
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flags will be in the same σ0-orbit if their ◦ − ? segment is the same. They will be in the
same σ1-orbit if their ◦ − • segment is the same, and in the same σ2-orbit if their • − ?

segment is the same. Note that each σi-orbit contains at most two elements. We can begin
to reconstitute the dessin by noting the number of each of the three types of edge, as the
orders of the quotient spaces 〈σi〉 \H.

Now let us consider the actions of σ1 and σ2 on the quotient space 〈σ0〉\H. Identifying
each element of 〈σ0〉 \H with a ◦−? edge, the σ0-orbits which are in the same orbit under
the action of σ1 should be those having the same ◦ point and those identified under σ2

have the same ? point. When σ0 and σ2 act on 〈σ1〉 \ H, considered as the set of ◦ − •
edges, they should identify edges having the same ◦ and • points respectively, and when
σ0 and σ1 act on 〈σ2〉 \H considered as the set of ?− • edges, they should identify sides
having the same ? and • points respectively. We use this information in two steps. The
first is to give the orders of the sets of vertices, edges and open cells of D respectively by
the orders of the double-orbit sets 〈σ1, σ2〉 \H, 〈σ0, σ2〉 \H and 〈σ0, σ1〉 \H. The second
step is the information on how to glue these components together. Take a point and an
edge given by an element x of 〈σ1, σ2〉 \H and an element y of 〈σ0, σ2〉 \H respectively.
The element x can be considered as a σ1-orbit of σ2-orbits and the element y as a σ0-orbit
of σ2 orbits. They can be glued together if and only if there is some σ2-orbit occurring in
both x and y. The same thing works to glue together edges and cells, and vertices and
cells. The whole situation is summarized by the similarity of the following two diagrams,
where F◦?, F◦• and F•? denote the sets of ◦ − ?, ◦ − • and • − ? edges respectively, while
F•, F? and F◦ denote the sets of vertices, edges and open cells:

F(D) H

+́́
´́

?
QQ

QQs +́́
´́

?
QQ

QQs
F◦? F◦• F•? 〈σ0〉 \H 〈σ1〉 \H 〈σ2〉 \H

?
QQ

QQs+́́
´́ QQ

QQs+́́
´́

? ?
QQ

QQs+́́
´́ QQ

QQs+́́
´́

?
F• F? F◦ 〈σ0, σ1〉 \H 〈σ0, σ2〉 \H 〈σ1, σ2〉 \H

QQ
QQs ?+́́

´́ QQ
QQs ? +́́

´́

· 1

To conclude, we note that changing B to σ−1Bσ for any σ ∈ C+
2 does not change any of

the above objects considered as sets together with the action of the elements of C2, because
the action of C2 on C2/σ−1Bσ is the same as on C2/B. So the dessin is independent of
the choice of representative of the conjugacy class of B. Moreover, if we construct a dessin
as above from a subgroup B ⊂ C+

2 and then consider the subgroup fixing some given flag
of the dessin, we find exactly a subgroup conjugate to B. For the set H = C2/B is the flag
set of the dessin and thus B fixes one flag (the one corresponding to the coset B), and we
saw in lemma I.3 that all subgroups fixing the different flags of a dessin are conjugate. ♦
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§3. The Grothendieck correspondence

We now have all the necessary ingredients to prove the main result of section I.

Theorem I.5: There is a bijection between the set of abstract clean dessins and the set of
isomorphism classes of clean Belyi pairs.

Proof: The groups π′1 and C+
2 are canonically isomorphic. Let φ : C+

2 → π′1 be defined by
φ(ρi) = li, i = 0, 1, and φ(ρ2) = l∞. Then the theorem is an immediate consequence of
Lemma I.1 and Theorem I.4. ♦

The Grothendieck correspondence can be described more concretely via the following
topological construction.

Given a clean Belyi pair (X,β), we let X2 be the topological model of X, X0 = β−1(0)
and X1 = β−1([0, 1]), where [0, 1] is the segment of the real line on P1C. Note that β−1(∞)
gives a point in each open cell of the dessin.

Requiring the Belyi function to be clean is equivalent to asking that there be a vertex
at each end of every edge. If a rational Belyi function has ramification order 1 or 2 over 1
then one can obtain dessins having edges with no vertex at one end.

We may interpret the association of a curve to a dessin with a marking directly on
the topological surface as follows. The flags, considered as triangles with vertices •, ?

and ◦, pave the topological surface X2 with lozenges made of pairs of adjacent flags, one
positively and one negatively oriented, where the common side is of the ◦−• type. Joining
the two ? vertices and the sides of the lozenge gives something homeorphic to the sphere.
Identifying all these lozenges with P1C by identifying the ? point with 1, the ◦ with ∞
and the • with 0 gives a morphism β : X2 → P1C, ramified only over 0, 1 and ∞, with the
ramification orders corresponding to the dessin. We put a Riemann surface structure on
X2 by requiring β to be a rational function.

It is important to remark that the Belyi function associated to a given abstract dessin
is not well-defined. Indeed, since the dessin corresponds to an isomorphism class of Belyi
pairs (X,β), β is defined only up to automorphisms of the Riemann surface X. In genus
0, this means that β is defined up to PSL2(C), in genus 1, up to affine transformations,
in genus 2, up to a finite automorphism group generically of order 2 and in genus greater
than 1, up to a finite automorphism group which is generically trivial.

§4. Ramified coverings of P1C− {0, 1,∞}

Suppose that X is a finite covering of P1C ramified only over 0, 1 and ∞, such that
all ramification over 1 is of order at most 2. Let x be a point on P1C different from 0, 1
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and ∞, and let {x1, . . . , xd} be the fiber over x, where d is the degree of the covering X.
Then loops originating from x and going clockwise once around 0, 1, and ∞ respectively
induce permutations σ0, σ1 and σ∞ of the points x1, . . . , xd, such that σ0σ1σ∞ = 1. Note
that σ1 is of order 2, and that σ0 and σ1 generate a subgroup of Sd which is transitive if
the covering is connected. Indeed, given any σ0 and σ1 ∈ Sd such that σ2

1 = 1 and the
subgroup generated by σ0 and σ1 is transitive, there exists a connected covering X of P1C
ramified only over 0, 1 and ∞ corresponding to it, such that the ramification orders over
1 are at most 2 (in order for all these orders to be exactly 2, d must be even and σ1 must
be a product of d/2 disjoint transpositions).

Given such an X, or equivalently, given an even positive integer d and two permuta-
tions σ0 and σ1 in Sd such that σ1 is the product of d/2 disjoint transpositions and the
subgroup 〈σ0, σ1〉 is transitive, we show how to draw the pre-clean dessin associated to X.
Set σ∞ = (σ0σ1)−1. Recall that the genus g of X can be calculated from the decomposition
of the σi into disjoint cycles as follows by Hurwitz’s formula:

2g − 2 = d− n0 − n1 − n∞,

where ni is the number of disjoint cycles occurring in σi.
To draw the dessin, begin by writing σ∞ as a product of l disjoint cycles s1 · · · sl. For

1 ≤ j ≤ l let kj be the length of sj and write sj = (i1,j , . . . , ikj ,j). For each sj , 1 ≤ j ≤ l,
draw a kj-gon. Orient the edges of every kj-gon by going around it in a counterclockwise
direction. Going around the edges of each kj-gon in order (starting from any edge), label
them with transpositions

(
i1,j , σ1(i1,j)

)
, . . . ,

(
ikj ,j , σ1(ikj ,j)

)
. Each such transposition is

one which actually occurs in the disjoint cycle decomposition of σ1.
Glue together the l polygons as follows: identify sides labelled by the same transposi-

tion, in the same direction. Clearly every edge is identified with exactly one other, so the
result is a compact topological surface Y with no boundary, and a natural dessin drawn on
it by the identified edges of the polygons. There is a natural morphism β from this surface
to P1C which is the one described at the end of §3, marking the dessin and identifying
lozenges with P1C. By construction, the covering β : Y → P1C has the same ramification
properties as X, and is therefore isomorphic to X.

II. The action of Gal(Q/Q) on dessins

In the Esquisse d’un Programme, Grothendieck notes that the action of Gal(Q/Q) is
faithful on the profinite completion π̂1 of the fundamental group of P1C− {0, 1,∞}. This
means that Gal(Q/Q) acts with no kernel, i.e. for every element σ ∈ Gal(Q/Q), there is an
element γ ∈ π̂1 such that the action of σ on γ is non-trivial. In this section we show that
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more can be said. In fact, Gal(Q/Q) acts faithfully on the set of dessins in genus 1, on the
set of dessins in genus 0 and even on the set of trees. Given any element σ ∈ Gal(Q/Q)
and a number field on which σ acts non-trivially, one can explicitly construct a tree on
which σ acts non-trivially.

The genus 1 case (and thus the faithfulness on π̂1) is a well-known result (cf. for
example [M, I.6, proof of Satz 2]).

Proposition II.1: The action of Gal(Q/Q) on the set of dessins in genus 1 is faithful.

Proof: A genus 1 dessin corresponds to a Q-isomorphism class of genus one curves, and
as is well-known these isomorphism classes are classified by the j-invariant, such a curve
being defined over Q if its j-invariant is. Clearly for every σ ∈ Gal(Q/Q) there exists j ∈ Q
such that σ does not act trivially on j. Let E be a genus 1 curve having j-invariant equal
to j. We construct a genus one dessin associated to E simply by using Belyi’s procedure
to transform some function on E, say x, into a function β : E → P1C ramified only over
0, 1 and ∞, and then letting the dessin be β−1([0, 1]). Then, since β will be defined over
a field containing Q(j), the element σ cannot act trivially on the function β nor on its
corresponding dessin. ♦

The genus 0 case is actually more difficult. The elegant proof of theorem II.4 for trees,
based on the technique of the proof of Belyi’s theorem, is due to H.W. Lenstra, Jr. We
first need two technical lemmas.

Lemma II.2: Let F be a polynomial of degree n and let d|n. Suppose there exists a
polynomial H such that H(0) = 0, H is monic, deg(H) = d and for some polynomial G,
F = G ◦H. Then H is unique.

Proof: Let deg(G) = m so n = md and write G = λmzm + · · · + λ0 and H = T d +
hd−1T

d−1 + · · ·+ h1T . Then

F = λmHm + λm−1H
m−1 + · · ·+ λ0.

The terms of the right-hand polynomial of degrees n, . . . , n−d+1 are contributed entirely
from the leading term λmHm. But from these terms one can uniquely solve for the d high-
est coefficients of H. For the leading term is 1 since H is monic, and for n−d+1 ≤ i ≤ n−1,
the coefficient of the term of degree i in Hm is a polynomial in hi−n+d, hi−n+d+1, . . . , hd−1

which is linear in hi−n+d. Thus the d highest coefficients 1, hd−1, . . . , h1 of H are deter-
mined, and since by assumption the constant term h0 = 0, H is completely determined.

♦
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Lemma II.3: Let G, H, G̃ and H̃ be polynomials such that G◦H = G̃◦ H̃ and deg(H) =
deg(H̃). Then there exist constants c and d such that H̃ = cH + d.

Proof: Let µ be the leading coefficient of H, and ν the constant coefficient of H/µ; let µ̃

be the leading coefficient of H̃ and ν̃ the constant coefficient of H̃/µ̃. Then there exist
polynomials G1 and G2 such that G ◦ H = G1 ◦ (H/µ − ν) = G̃ ◦ H̃ = G2 ◦ (H̃/µ̃ − ν̃).
But both H/µ − ν and H̃/µ̃ − ν̃ are monic, their constant terms are 0 and their degrees
are equal, so by lemma II.2 they are equal. Then setting c = µ̃/µ and d = µ̃(ν̃ − ν) we
have H̃ = cH + d. ♦

Theorem II.4: The action of Gal(Q/Q) on the set of trees is faithful.

Proof: Let σ ∈ Gal(Q/Q). We will exhibit a tree such that the action of σ on it is non-
trivial. Let K be a number field and α a primitive element for K, such that the action of
σ on α is non-trivial. In order to show that there is a tree on which σ acts non-trivially, it
suffices to show that there is a tree defined over K, i.e. that there exists a Belyi function
β(z), corresponding to a tree, defined over K and such that βσ(z) is not equal to β(az+b

cz+d )
except when az+b

cz+d = z. Now, a rational Belyi function β corresponds to a tree when ∞
has exactly one pre-image under β, corresponding to the fact that a tree is a dessin on the
sphere possessing a unique open cell. In particular, this will be the case whenever β(z) is
a Belyi polynomial, in which case the unique point over ∞ will be ∞; β corresponds to a
tree whose unique open cell contains ∞. If a polynomial satisfies βσ(z) = β(az+b

cz+d ) then we
must have c = 0 (and d = 1, up to replacing a and b by a/d and b/d) since βσ(z) is also a
polynomial. So we will exhibit a Belyi polynomial β(z), defined over K and such that if a

and b are such that βσ(z) = β(az + b), then a = 1 and b = 0.
We construct such a β(z) explicitly as follows. Let fα(z) ∈ K[z] be a polynomial

whose derivative f ′α(z) is given by

f ′α(z) = z3(z − 1)2(z − α).

By the proof of Belyi’s theorem, there exists a polynomial f(z) ∈ Q[z] such that f ◦ fα

is a Belyi polynomial which we call gα. Let β = ασ (by assumption, β 6= α). Since f is
defined over Q, we obtain another Belyi polynomial gβ = f ◦ fβ where fβ = fσ

α .
Let Tα be the abstract tree corresponding to the Belyi polynomial gα, and Tβ the tree

corresponding to gβ , so Tβ = T σ
α . In order to prove that σ acts non-trivially on Tα, we

must show that Tα and Tβ are distinct. As mentioned above, this is equivalent to showing
that we cannot have gβ(z) = gα(az + b) for any constants a, b.

Suppose we do have such a and b. Then gβ(z) = gα(az+b), i.e. f
(
fβ(z)

)
= f

(
fα(az+

b)
)
. Now applying lemma II.3 with G = G̃ = f(z) and H = fα(az + b), H̃ = fβ(z), we see

that there exist constants c and d such that fα(az + b) = cfβ(z) + d. Consider the critical
points of both these functions. The right-hand function has the same critical points as fβ ,

11



12 Leila Schneps

namely the point 0 (of order 3), the point 1 (of order 2) and the point β (of order 1). The
left-hand function has three critical points xi, i = 1, 2, 3, where each xi is of order i and
ax1 + b = α, ax2 + b = 1 and ax3 + b = 0, since az + b must take these three critical points
to the critical points of fα, respecting their orders. By equality of the two sides, we must
have x1 = β, x2 = 1 and x3 = 0. But the two equations ax2 + b = 1 and ax3 + b = 0 then
give a = 1 and b = 0, so the equation ax1 + b = α gives β = α, contrary to the assumption
that β 6= α. Therefore, we cannot have gβ(z) = gα(az + b) for any constants a, b other
than a = 1, b = 0, which shows that the trees Tα and Tβ = Tσ

α are distinct. ♦

Corollary: Gal(Q/Q) acts faithfully on the set of genus 0 dessins.

III. The genus zero case

The goal of part III is to make the Grothendieck correspondence completely explicit
for dessins of genus 0, i.e. such that X2 is a sphere, in order to determine the action of
Gal(Q/Q) on them (from now on, we denote Gal(Q/Q) by IΓ). There are two directions
in the procedure. The first is the theoretically easier direction, i.e. how to calculate the
pre-image under a Belyi function β of the segment [0, 1]. That is the purpose of §1.

The other direction is, given the dessin, to calculate an associated Belyi morphism.
This can be done in various ways. The most complete exposition of the problem, for
any genus, is given in the article by Couveignes and Granboulan in this volume. In the
genus zero case, when the dessin is sufficiently small for the algorithm to work, it can
be done by reducing the problem to that of solving a system of polynomial equations in
several variables. The simplest way of doing this, due to Atkin and Swinnerton-Dyer, is
described in the article by Birch in this volume, with a simplification for trees described
in the article by Shabat. Such calculations were also performed earlier by others such
as Matzat or Malle in order to calculate defining equations and Belyi functions for field
extensions whose existence was known by rigidity (cf. [M,II.3,III.5,III.6], also [Ma], also
Malle’s article in this volume.).

In §2, we give a procedure similar to the original one of Atkin and Swinnerton-Dyer,
which however replaces the use of the roots of a polynomial as unknowns by its coefficients,
giving a slight improvement in efficiency. We then describe in §3 the use of the Gröbner
basis method to solve the equations. For a given genus zero dessin D this algorithm yields a
finite set of solutions to the equations, each of which gives rise to an explicit Belyi function.
We then use the methods of §1 to identify the Belyi function actually associated to the
given dessin D. The IΓ-conjugates of this function then give the IΓ-conjugates of D. In all,
for a genus zero dessin D, these methods yield

12
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(i) the set O(D) of dessins in the orbit of D under the action of IΓ

(ii) the number field KD′ associated to each dessin D′ ∈ O(D)

(iii) a set of IΓ-conjugate Belyi functions corresponding to the
dessins in O(D)

(iv) the action of IΓ on O(D).

§1. Reconstruction of a dessin from a Belyi function

In order to explicitly reconstruct the dessin D associated to a given rational clean
Belyi function β(z) we would like to simply calculate the pre-image of the segment [0, 1]
under the β(z). In order to avoid studying what happens near the ramification points, we
use Picard’s method to reconstruct the permutations σ0 and σ1 associated to the dessin
as in I, §4. We proceed explicitly as follows.

Suppose that β : P1C → P1C is a rational clean Belyi function of degree 2d. Let A0

be the set of pre-images of 0 under β, A1 the pre-images of 1 and A∞ the pre-images of
∞. Choose open sets {Uα | α ∈ A0 ∪ A1 ∪ A∞}, where each Uα is a neighborhood of α.
For i ∈ {0, 1,∞}, set Vi = ∪α∈Aiβ(Uα). Then V0, V1 and V∞ are open neighborhoods of
0, 1 and ∞ respectively: we may choose all the open sets concerned small enough so that
d(Vi, Vj) > 0 for i, j ∈ {0, 1,∞}, i 6= j, where d denotes the usual distance in P1C.

Let
X = P1C \ (∪α∈A0∪A1∪A∞Uα)

and Y = P1C\ (V0∪V1∪V∞) (note that since V∞ is a neighborhood of ∞, Y is a compact
set). Choose a base point x0 in Y and let x1, . . . , x2d be the pre-images of x0 under β.
Choose a loop γ0 starting from x0 and going once clockwise around 0 and a loop γ1 starting
from x0 and going once around 1, where both γ0 and γ1 lie entirely in Y .

The pre-image of the path γ0 is given by 2d non-intersecting paths g1, . . . , g2d ⊂ X,
where each γi starts at the point xi and ends at a point xj also in the fiber over x0. No two
of the gi can end at the same point (since the gi must be non-intersecting), so these paths
induce a permutation in S2d sending each i ∈ {1, . . . , 2d} to the j ∈ {1, . . . , 2d} such that
the path starting at xi ends at xj . This is the permutation σ0. The same procedure applied
to the path γ1 gives the permutation σ1 ∈ S2d (which, because β(z) is clean, consists of
the product of d disjoint transpositions). Thus, if we explicitly determine the complete
pre-image of the paths γ0 and γ1 we immediately obtain the permutations σ0 and σ1.

We use the fact that the second derivative β′′ of β is bounded on Y , say |β′′(z)| < C

for z ∈ Y . We need the following proposition (Picard’s method):

13



14 Leila Schneps

Proposition III.1: Let w0 be a point of Y and z0 ∈ X be such that β(z0) = w0. Let
r < |β′(z0)|/2C and r′ < r|β′(z0)|/2. Let U and V be the open balls B(z0, r) ⊂ P1C and
B(w0, r

′) ⊂ P1C respectively. Let w ∈ V and let φw(z) be defined on X by

φw(z) = z +
1

β′(z0)
(
w − β(z)

)
.

Then φw(U) ⊆ U and for all z ∈ U , |φw(z)− φw(z0)| ≤ 1
2 |z − z0|.

Proof: We first show that |φw(z)− φw(z0)| ≤ 1
2 |z − z0| for all z ∈ U . By the Mean Value

Theorem, we know that

|φw(z)− φw(z0)| ≤ sup|φ′w(z)||z − z0|

where the sup is over z ∈ U . Now,

φ′w(z) =
1

β′(z0)
(
β′(z0)− β′(z)

)

so we again apply the Mean Value Theorem to obtain

|β′(z)− β′(z0)| ≤ sup|β′′(z)||z − z0| ≤ C|z − z0|.

So

sup|φ′w(z)| ≤ C|z − z0|
|β′(z0)| .

Now, since z ∈ U , |z − z0| ≤ r so

|φw(z)− φw(z0)| ≤ Cr

|β′(z0)| |z − z0| ≤ 1
2
|z − z0|

as desired.
We now show that φw(U) ⊆ U . It suffices to show that for z ∈ U , |φw(z) − z0| ≤ r.

Now,

|φw(z)− z0| ≤ |φw(z)− φw(z0)|+ |φw(z0)− z0| ≤ 1
2
|z − z0|+ |w − β(z0)|

|β′(z0)|

≤ 1
2
r +

|w − w0|
|β′(z0)| ≤

1
2
r +

r′

|β′(z0)| ≤ r

by definition of r′. ♦

Note that the proof of the proposition shows that although the ball B(z0, r) (resp.
B(w0, r

′)) may not lie completely in X (resp. Y ), it cannot contain any of the critical

14
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points (resp. critical values) of β. The point of the proposition is to show that β is
injective on B(z0, r) and surjective onto B(w0, r

′).
We return to the problem of calculating the permutations σ0 and σ1. Since we have

excluded from X neighborhoods of all points z such that β′(z) = 0, we must have a lower
bound for |β′(z)| on X, say K < |β′(z)| for z ∈ X. Choose r < K/2C and r′ < rK/2.
These numbers depend only on β and on the original choice of open sets {Uα}.

Let x0 ∈ Y be the base point for the curves γ0 and γ1 as before. For any point w0

on γ0, let z0 be a fixed pre-image of w0 under β. Set U = B(z0, r) and V = B(w0, r
′).

Choose any w ∈ V and let

φw(z) = z +
1

β′(z0)
(
w − β(z)

)
.

Then by proposition III.1, for any z ∈ U , the sequence {φn
w(z)} must lie entirely in U =

B(z0, r). Therefore it must converge to the unique fixed point of φw in U , namely the
unique element z ∈ U such that β(z) = w. This means that in order to calculate each
of the 2d paths in the pre-image of γ0 it suffices to cut γ0 into pieces of length < r′/2.
Suppose there are m such pieces. Let x0 be a base point for γ0 as before. Choose m

distinct points w0 = x0, w1, . . . , wm−1 on γ0, one in each piece, so |wi+1 − wi| < r′, i.e.
wi+1 ∈ B(wi, r

′). Set wm = x0. Now by proposition III.1, for 1 ≤ i ≤ 2d, we can apply
iteration of the function φw1 to z0 = xi to obtain the unique point z1 on the path gi lying
over w1, then iteration of the function φw2 to the point z1 to obtain the unique point z2 on
gi lying over w2, and so on, until we have entirely reconstructed the path gi. In particular
if xi is the starting point of the path gi, the endpoint xσ0(i) of gi will be given by iterating
the function φwm starting from the point zm−1 ∈ gi lying over wm−1 ∈ γ0. The same
procedure obviously works for the path γ1 to give the permutation σ1; note that r and r′

do not need to be changed. Once the permutations σ0 and σ1 have been calculated, the
dessin is reconstructed following the procedure in I, §4.

§2. The Belyi function associated to a genus zero dessin

We now start the second part of the procedure outlined at the beginning of part III,
that of reducing the construction of the Belyi function of a genus zero dessin to a set of
polynomial equations in several variables having only a finite number of solutions. Let us
recall again that this type of exact algorithm will only give an explicit result in the cases
where the dessin is of genus zero and reasonably small – improved methods in the other
cases are discussed at length in the article by Couveignes and Granboulan in this volume.
We separate the genus 0 dessins into two categories: trees, i.e. those for which X2 \ X1

consists of a single open cell, and the others. This is because the bipartite structure which
can be put on a tree gives rise to a set of equations with just half the number of variables

15



16 Leila Schneps

as in the general case, as can be seen by comparing theorems III.3 and III.5. We note that
although this method always gives a Belyi function associated to D, there is no reason for
it to give one defined over the smallest possible field. This question is also dealt with by
Couveignes and Granboulan.

From now on we will suppose that there is a vertex at each end of every edge of the
genus zero dessin D, so as to obtain clean Belyi functions. As mentioned at the end of
part I, the Belyi function associated to any dessin of genus 0 is not well-defined, for if β is
such a function, then β can be composed with any automorphism of P1, i.e. any element
of SL2(C). In theorem III.3 we give a method for finding a Belyi function associated to
any given genus zero dessin. Before doing so we note (cf. [SV]) that a rational clean Belyi
function is easy to describe in terms of polynomials. Let β(z) = A(z)/C(z) be a rational
clean Belyi function. Then in particular β(z)−1 =

(
A(z)−C(z)

)
/C(z) must have roots of

order exactly 2, so we must have A(z)− C(z) = cB(z)2 for some polynomial B(z) ∈ C[z]
having distinct roots and some constant c. As a converse we have:

Lemma III.2: Let A(z), B(z) and C(z) ∈ C[z] be polynomials. Suppose that B(z) has
distinct roots, that A(z) − C(z) = B(z)2, and that AC ′ − CA′ = ÃC̃B where for any
polynomial P (z) =

∏
i(z − ai)ni , we write P̃ =

∏
i(z − ai)ni−1. Then β(z) = A(z)/C(z)

is a clean Belyi function.

Proof: Set β = A/C. Then β′ = (AC ′ − CA′)/C2 = ÃC̃B/C2. So the roots of β′ are
given only by the (multiple) roots of A and of C, and the (simple) roots of B. The values
of β at these roots are 0 (at the roots of A), ∞ (at the roots of C) and 1 (at the roots of
B); moreover the ramification indices over 1 are all exactly 2 since B has distinct roots.♦

Let us now consider a clean genus zero dessin D.

Definition 7: The valency of a vertex of D is the number of edges coming out of it. The
valency is a local property thus loops originating from the vertex are counted twice. The
valency of an open cell is the number of edges bounding it, an edge being counted twice if
the open cell lies on both sides of it.

If β is a clean rational Belyi function such that D = β−1([0, 1]), then the valency of
each vertex (resp. open cell) of D is equal to the order of the corresponding zero (resp.
pole) of β.

To a given dessin D, let us associate two valency lists. From now on, let n = nD

denote the maximal valency of any vertex of D, and m = mD the maximal valency of any
open cell. Let V = {u1, . . . , un} be the vertex valency list where for 1 ≤ i ≤ n, ui is the
number of vertices having valency i, and C = {v1, . . . , vm} be the open cell valency list,
where for 1 ≤ j ≤ m, vj is the number of open cells of valency j. Note that there is only
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a finite number of genus 0 dessins having given valency lists V and C, for such a dessin
must have e edges where 2e =

∑
i ui +

∑
j vj − 2 by Euler’s formula.

Let D be a genus zero dessin with e edges. We now begin the construction of the
set of polynomial equations which will give a Belyi function associated to D. Let V =
{u1, . . . , un} and C = {v1, . . . , vm} be the valency lists of D. For 1 ≤ i ≤ n, set

P̃i(z) = zui + Ci,ui−1z
ui−1 + · · ·+ Ci,1z + Ci,0

and for 1 ≤ j ≤ m set

Q̃j(z) = zuj + Dj,vj−1z
vj−1 + · · ·+ Dj,1z + Dj,0,

where the Ci,k and the Dj,k are indeterminates. Let the system of polynomials {P̃i, Q̃j} be
called R̃V,C . Note that R̃V,C does not depend on the dessin D but only on its valency lists,
which determine a finite number of dessins, all having e edges where 2e =

∑
i ui+

∑
j vj−2.

The aim of what follows is to show that there exist algebraic numbers ci,k and dj,k

such that when the Ci,k and the Dj,k are replaced by these values, the rational function

β(z) =
∏n

i=1 P̃i(z)i

∏m
j=1 Q̃j(z)j

becomes a Belyi function defined over Q such that D = β−1([0, 1]).
The Belyi function β obtained in such a way will be defined only up to SL2(C). In

order to fix a unique choice, we give new system of polynomials RV,C obtained from R̃V,C

by specialization. The specialization consists in fixing three unknowns – which may be
linear combinations of the indeterminates – to specific values. This can be done in any
number of ways, and there are choices which have the advantage of minimizing the degree
of the number field over which the Belyi function will be defined. We do not concern
ourselves with this improvement here, but choose simply to set either a vertex or (the
center of) an open cell of minimal valency to infinity. This is done in (i) of definition 8.
Next, in (ii), we set one of the Ci,j or the Di,j to the value 1 and another to 0, making
sure that it is legitimate to do so.

Definition 8: The system RV,C of polynomials associated to the valency lists V and C is
obtained from R̃V,C in three steps as follows.

(i) If the dessin has only one vertex, say of valency i0, then i0 > 1 by the assumption
that D has a vertex at the end of every edge. Set

Pi0(z) = P̃i0(z)− Ci0,1z − Ci0,0 + z.

17
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If the dessin has more than one vertex, choose an i0 ∈ {1, . . . , n} or a j0 ∈ {1, . . . ,m} such
that ui0 or vj0 is minimal in the set {ui | 1 ≤ i ≤ n, ui 6= 0} ∪ {vj | 1 ≤ j ≤ n, vj 6= 0}. If
an i0 is chosen set

Pi0(z) = γ(zui0−1 + Ci0,ui0−2z
ui0−2 + · · ·+ Ci0,1z + Ci0,0),

and if it is a j0 set

Qj0(z) = γ(zvj0−1 + Dj0,vj0−2z
vj0−2 + · · ·+ Dj0,1z + Dj0,0),

where γ is an indeterminate.

(ii) If the dessin has only one vertex, say of valency i0, then the dessin possesses at
least 2 open cells of valency 1, since such a dessin must consist of closed loops. Set

Q1(z) = Q̃1(z)−D1,1z −D1,0 + z.

Now consider the case where the dessin has more than one vertex. If there exists any
i1 ∈ {1, . . . , n} such that ui1 > 1 and if an i0 was chosen in (i), then i1 6= i0 (resp. if there
exists j1 ∈ {1, . . . , m} such that vj1 > 1 and if a j0 was chosen in (i), then j1 6= j0) then
set

Pi1(z) = P̃i1(z)− Ci1,1z − Ci1,0 + z

(resp. Qj1(z) = Q̃j1(z)−Dj1,1z −Dj1,0 + z.)

If all non-zero ui and vj apart from the i0 or j0 chosen in (i) are equal to 1, then we
can always choose a couple of one of the three forms (i1, i2), (i1, j1) or (j1, j2), in such a
way that if an i0 was chosen in (i) then i1 and i2 are different from i0, and if a j0 was
chosen then j1 and j2 are different from j0. If a couple of the type (i1, i2) is chosen set
Pi1(z) = P̃i1(z)−Ci1,0 and Pi2(z) = P̃i2(z)−Ci2,0 +1. If a couple of type (i1, j1) is chosen
set Pi1(z) = P̃i1(z)−Ci1,0 and Qj1(z) = Q̃j1(z)−Dj1,0 + 1, and if a couple of type (j1, j2)
is chosen set Qj1(z) = Q̃j1(z)−Dj1,0 and Qj2(z) = Q̃j2(z)−Dj2,0 + 1.

(iii) For all i ∈ {1, . . . , n} and j ∈ {1, . . . , m} which were not chosen as an i0, i1, i2,
j0, j1 or j2 as in (i) and (ii), set

Pi(z) = P̃i(z)

and
Qj(z) = Q̃j(z).

Let the system of polynomials RV,C be given by the set {Pi, Qj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Theorem III.3: Let D be a genus zero dessin, assumed to have a vertex at each end of
every edge. Let V = {u1, . . . , un} and C = {v1, . . . , vm} be the valency lists of D, and let
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RV,C = {Pi, Qj} be the associated polynomial system defined above. Let e be the number
of edges of D, let B0, . . . , Be−1 be indeterminates and set B(z) = ze + Be−1z

e−1 + · · · +
B1z + B0. Set A(z) =

∏n
i=1 Pi(z)i and C(z) =

∏m
j=1 Qj(z)j. Let SV,C be the system of

polynomial equations given by comparing the coefficients on both sides of the equation

A(z)− C(z) = ±B(z)2,

where the sign is positive or negative according to whether A or C has higher degree (by
construction of RV,C , their degrees are different). We have:

(i) For each solution s of SV,C , let βs(z) be the rational function obtained from
A(z)/C(z) by substituting the values of the solution for the indeterminates. Then βs(z) is
a rational clean Belyi function.

(ii) The dessins corresponding to the functions βs(z) are exactly the set of those having
valency lists V and C. In particular, there exists at least one solution s of SV,C such that
D = β−1

s ([0, 1]).

(iii) The system SV,C admits only a finite number of solutions s. In particular, they
are all defined over Q and thus the same is true of the functions βs(z).

Proof: (i) This part is an immediate consequence of lemma III.2. Note that the sign in
front of B(z)2 is +1 exactly when an j0 was chosen in (i) of the definition of RV,C and −1
when an i0 was chosen.

(ii) This is an immediate consequence of the definition of valency given earlier and
the remark immediately following this definition, relating the orders of the poles of βs to
the valencies of the open cells of D and those of the zeros to the valencies of the vertices.

(iii) Suppose that the system SV,C (which is a system with 2e equations and 2e

indeterminates) admits an infinite number of solutions s. Then in particular there exists
a dessin D′ having the same valency lists V and C as D, such that an infinite number of
solutions s give rise to Belyi functions βs(z) corresponding to D′. Now, either a vertex of
D′ of valency i0 or an open cell of valency j0 must be at ∞, and a vertex of valency i1

or an open cell of valency j1 must be at 0, according to the choices made in defining the
system RV,C , and the condition Ci1,1 = 1 means that the product of the vertices of valency
i1 is equal to 1. Clearly there are only a finite number of ways of realizing the dessin D′ as
the pre-image of a rational Belyi function under these conditions. In particular one such
realization is given by an infinite number of Belyi functions βs(z), which is impossible by
the Grothendieck correspondence. ♦

We now show how a similar but simpler system than SV,C can be obtained when the
dessin is a tree.
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Definition 9: A tree is a Grothendieck dessin X0 ⊂ X1 ⊂ X2 of genus zero such that
X2 \X1 consists of exactly one open cell.

From the remark at the end of part I that β−1(∞) gives a point in each open cell of
the dessin corresponding to β, we see immediately that the Belyi function corresponding
to a tree must be a polynomial. Such a polynomial has only two finite critical values, 0
and 1.

The following simplification for trees was described by Shabat (and is partially dis-
cussed in his article in this volume).

Definition 10: A polynomial P ∈ C[z] is said to be a generalized Chebyshev polynomial
if there exist c1 and c2 ∈ C such that for all z0 such that P ′(z0) = 0 we have either
P (z0) = c1 or P (z0) = c2, i.e. P has at most 2 critical values. If the critical values of P

are exactly {±1} we say that P is normalized.

Lemma III.4: (i) Let P (z) be a normalized generalized Chebyshev polynomial, and set
β(z) = 1− P 2. Then β(z) is a clean Belyi polynomial and the dessin given by β−1([0, 1])
is a tree with ∞ in its open cell.

(ii) Let T be a tree. Then there is a normalized generalized Chebyshev polynomial
P (z) such that setting β(z) = 1− P (z)2 we have T = β−1([0, 1]).

Proof: (i) If β(z) = 1− P 2(z) then β has only 0 and 1 as critical values. Thus β is clearly
a Belyi function and since it has only one pole, β−1([0, 1]) must be a tree.

(ii) If T is a tree then there exists a rational Belyi function β(z) such that T =
β−1([0, 1]). Since T is a tree β has only one pole. Composing β with a suitable transfor-
mation in SL2(C) if necessary we may suppose the pole is at ∞ so β is a Belyi polynomial
whose only critical values are at 0 and 1. Moreover because we assume that β is clean, we
must have β(z)− 1 = cQ(z)2 for some constant c and some polynomial Q having distinct
roots. The critical points of β are the roots of Q and the critical points of Q. Moreover β

can only have 0 and 1 as critical values, and 1 can only occur at the roots of Q, so at a crit-
ical point z0 of Q which is not a root we must have 1 + cQ(z0)2 = 0 so Q(z0) = ±

√
−1/c.

Set P (z) =
√−cQ(z). Then β(z) = 1− P (z)2 and the critical values of P are ±1. ♦

The open cell valency list of a tree is particularly simple: there is only one open cell
and its valency is twice the number of edges of the tree. Instead of using a vertex and an
open cell valency list to describe the tree, we will describe it by two valency lists as follows.
A bipartite structure on a tree is the assignation of a sign ±1 to each vertex, in such a
way that if a vertex is of one sign, every one of its neighbors is of the opposite sign. The
bipartite structure is clearly unique up to global change of sign. From now on, let T be a
tree with a bipartite structure, let n be the highest valency of any positive vertex and m
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the highest valency of any negative one. Let V + = {u1, . . . , un} be the positive valency
list, where ui is the number of positive vertices having valency i, and V − = {v1, . . . , vm}
be the negative valency list, so vj is the number of negative vertices having valency j. We
will describe a set of polynomials RV +,V − and a system of polynomial equations SV +,V − ,
analogous to the sets RV,C and SV,C in theorem III.3, but smaller. We use identical
notations as in the non-tree case in order to emphasize the similarity of the procedure.

For 1 ≤ i ≤ n set

P̃i(z) = zui + Ci,ui−1z
ui−1 + · · ·+ Ci,1z + Ci,0

and for 1 ≤ j ≤ m set

Q̃j(z) = zvj + Dj,vj−1z
vj−1 + · · ·+ Dj,1z + Dj,0,

where as earlier, the Ci,k and the Dj,k are indeterminates. Let R̃V +,V − be the set of
polynomials {P̃i, Q̃j}; as before, this set only depends on the valency lists V + and V − and
therefore apply to a finite number of trees. We obtain a set of polynomials RV +,V − from
R̃V +,V − as follows. Choose an i0 ∈ {1, . . . , n} such that ui0 6= 0 and set

Pi0(z) = P̃i0(z)− Ci,1z − Ci,0 + z.

For all i 6= i0 set Pi(z) = P̃i(z) and for 1 ≤ j ≤ m set Qj(z) = Q̃j(z). Let RV +,V − be the
set {Pi, Qj}. Now we have a theorem for trees analogous to theorem III.3:

Theorem III.5: Let T be a tree, assumed to have a vertex at the end of each edge, with
a bipartite structure. Let V + = {u1, . . . , un} and V − = {v1, . . . , vm} be its positive and
negative valency lists. Let

P (z) =
m∏

j=1

Qj(z)j ,

and let SV +,V − be the set of polynomial equations obtained by comparing coefficients on
both sides of the following equation:

P (z)− P (0) =
n∏

i=1

Pi(z)i.

We have:

(i) For each solution s of SV +,V − , let Ps(z) be the normalized generalized Chebyshev
polynomial given by replacing the indeterminates in the polynomial 2

P (0)P (z) − 1 by the
values of s, and let βs(z) be the polynomial obtained by replacing the indeterminates in the
polynomial 1− Ps(z)2 by the values of s. Then βs(z) is a clean Belyi polynomial.
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(ii) The trees corresponding to the polynomials βs(z) are exactly the set of trees having
valency lists V + and V −.

(iii) The system SV +,V − admits only a finite number of solutions, all defined over Q.
In particular, all the βs(z) are defined over Q.

Proof: By construction, P (z) has only two critical values, 0 and P (0), so clearly Ps(z) is a
normalized generalized Chebyshev polynomial, and therefore βs(z) is a Belyi polynomial
by lemma III.4. This proves (i). The proofs of (ii) and (iii) are identical to those in theorem
III.3. ♦

§3. The Gröbner basis algorithm

In order to explicitly obtain a rational Belyi function associated to a given genus zero
dessin, it is necessary to be able to explicitly calculate all solutions to the set of equations
SV,C or SV +,V − . We do this using the Gröbner basis method (see [CLO] for a basic
reference to this algorithm).

In order to apply this method, we need to impose an ordering on the indeterminates,
which in turn imposes an ordering on the monomials in them. For instance, if the indeter-
minates are x1, . . . , xr, we may put an ordering on the xi via xi > xj if and only if i < j.
We put a lexicographic ordering on the monomials by decreeing that xa

i > xb
j if and only

if either i < j, or i = j and a > b, and if A, B and C are monomials and A < B, then
AC < BC.

Let S be an ideal in the polynomial ring Q[x1, . . . , xr]: in our case, the ideal generated
by the system of equations SV,C or SV +,V − . A Gröbner basis {g1, . . . , gs} of S with respect
to the lexicographic ordering on the xi has the following property: a set of representatives
of Q[x1, . . . , xr]/S is given by the set of power products in x1, . . . , xr which are not divisible
by the leading (in the lexicographic sense) power product of any gi (a power product is a
monomial with coefficient equal to 1).

If, as in our case, the number of equations is equal to the number of indeterminates
and the number of solutions to the system of equations generating S is finite, then there
is only a finite number of power products in the xi not divisible by the leading power
product of any gi. This implies that among the elements of the Gröbner basis g1, . . . , gs

(with s ≥ r), there are r of them, say g1, . . . , gr whose leading power products are of the
form xa1

1 , . . . , xar
r . In particular, gr must be a polynomial in the single variable xr. In our

case, exactly one root of this polynomial belongs to the solution of SV,C which corresponds
to the given dessin D. Now, the polynomial gr may well be reducible. In that case, the set
of solutions of SV,C corresponding to the set of dessins which are Galois conjugate to D

come exactly from the irreducible factor of gr one of whose roots corresponds to D itself.

22



Dessins d’enfants 23

The solutions coming from roots of gr which are not roots of this irreducible factor give
other (complete Galois orbits of) dessins which are not Galois conjugate to D (see example
1 of IV for an example of this). In general, the system SV,C gives an ideal of dimension 0
of the polynomial ring, and the solutions corresponding to a Galois orbit of a given dessin
correspond to one of the irreducible components of this ideal.

In order to apply the Gröbner basis method to the systems SV,C and SV +,V − described
in §2, we used the Maple package grobner. The routines in this package automatically select
an ordering on the indeterminates. We have not yet found an example where the Gröbner
basis given in this way does not have the form {g1, . . . , gr} where gr is a polynomial in
one of the indeterminates, and for 1 ≤ i ≤ r − 1, gi is a polynomial in xr and one other
indeterminate, in which it is linear. We give a few examples in section IV. When this is
true, the different solutions to the system SV,C (or SV +,V −) are given by the roots of the
final polynomial gr.

IV. Examples of the method

We give here three basic examples of the procedure described in section III. Many
more such examples are given in the articles by Birch, Couveignes-Granboulan and Malle
in this volume. Note that in the examples given here, the Gröbner basis gave a Belyi
function defined over the moduli field of the dessin which is also its field of definition in
each case (see Couveignes-Granboulan for details on this question). We thus obtained an
explicit minimal polynomial for the field of definition of the dessin. In the examples given
here, the calculations were performed using Maple V, via the simple genus zero algorithm
mentioned above and the Gröbner basis method.

Example 1: This is the tree mentioned in the introduction to this volume, whose Galois
orbit contains only half of the trees having identical valency lists. Let T be the left-hand
tree and T ′ the right-hand tree in the following diagram:

T has positive valency list V + = {5, 1, . . . , 1} (with 15 positive vertices of valency 1),
and negative valency list {2, 3, 4, 5, 6}. In all there are exactly 24 trees having the same
valency lists as T . Each one corresponds to a change in the ordering of the branches of
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T coming out of the central point; these define permutations of {2, 3, 4, 5, 6} up to cyclic
permutations.

The Gröbner basis method gives a minimal Belyi function as follows. We specialized
by setting the unique positive vertex of valency 5 to 0 and the unique negative vertex of
valency 6 to 1 (as usual, the open cell is located at ∞ so that our Belyi function will in
fact be a polynomial). Let L be the splitting field of the following polynomial:

Q(z) = 104247 z12 + 416988 z11 + 977832 z10 + 1716984 z9 + 2430621 z8+
2818188 z7 + 2743316 z6 + 2259516 z5 + 1559145 z4 + 881776 z3 + 401604 z2+
135828 z + 26411.

For any root b5 of Q(z) (we call it b5 because the negative vertex of valency 5 will be
located at this root), define numbers b2,b3 and b4 as follows:

b2 = −1
90229675436255124 (11117953310160486933 b11

5 +
74414217650153784975 b10

5 +
224204971865186403387 b9

5 + 439466725870053120081 b8
5+

649692977180346569502 b7
5 + 770412410679635482950 b6

5+
739733459145142775770 b5

5 + 574488699136179407930 b4
5+

359588050401471437497 b3
5 + 176077260180110238271 b2

5+
60319246611391794719 b5 + 10806447247008193165).

b3 = 1
1107819903967354578 (696562804230787981773 b11

5 +
3403158560829345734559 b10

5 +
8571054228569266099635 b9

5 + 15021111222585772316361 b8
5+

20503446306112955619414 b7
5 + 22575423065501347015230 b6

5+
20168180751619727252458 b5

5 + 14645381339995601263754 b4
5+

8565837922136014875145 b3
5 + 3848050430806485822583 b2

5+
1173175938462887204153 b5 + 180080421459956680201).

b4 = 1
86887835605282712 (46002450933225137637 b11

5 +
202981144281445544157 b10

5 +
471365799526820237967 b9

5 + 775670315522923479609 b8
5+

1004786466897370851324 b7
5 + 1046671810555507144740 b6

5+
879303815227739263954 b5

5 + 598085687602105746722 b4
5+

324266105576407182307 b3
5 + 129920504038754393755 b2

5+
32500268388779441943 b5 + 3375744126892136461).

Set P (z) = (z − b2)2(z − b3)3(z − b4)4(z − b5)5. Then P (z) is defined over L, and it
is precisely the polynomial P (z) of theorem III.5, b2, b3 and b4 giving the positions of the
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negative vertices of valency 2, 3 and 4 respectively. Therefore for each root b5 of Q(z) we
obtain a Belyi function by setting

β(z) = 1− ( 2
P (0)

P (z)− 1
)2

.

It is easily verified that the 12 roots of Q(z) give rise to 12 Belyi functions correspond-
ing to non-identical trees. Therefore the Galois orbit of T consists in 12 trees and so the
degree of its associated number field is 12. Thus, a primitive generator of the number field
KT is given by the root b5 of Q(z) such that the associated Belyi polynomial corresponds
to T ; this root is approximated by

b5 ≈ .07975979989− .9494529866 i,

the other values being given by

b2 ≈ .215145 + .535128299 i, b3 ≈ −.4121365 + .501616 i,

b3 ≈ −.753923− .244862 i.

Recalling that b6 = 1 and that the central point of T is located at 0 by choice of special-
ization, it is clear that these values give the right abstract tree since they give the correct
ordering of the different branches around the central point.

The 24 possible orderings of the central branches of T can be expressed as permutations
of {2, 3, 4, 5, 6} starting with 2, i.e. permutations of {3, 4, 5, 6}. The 12 trees corresponding
to the roots of Q(z) turn out to correspond precisely to permutations of {3, 4, 5, 6} by
elements in A4. This phenomenon appears to be quite mysterious. The other 12 trees
having identical valency lists to those of T form a separate Galois orbit, that of the tree
T ′ in the above diagram. The orbit is obtained from the splitting field of the polynomial

Q̃(z) = 104247 z12 + 416988 z11 + 977832 z10 + 1717236 z9 + 2430117 z8+
2818416 z7 + (8229940/3) z6 + 2259416 z5 + 1559449 z4 + (2644796/3) z3 + 401604 z2+
135828 z + 26411

and the three equations

b2 = 1
47761424567136377197254 (20075431169583797779922436 b11

5 +
72706224229736329912598919 z10 + 139922598387146617045889469 z9+
189956169132783373705118436 z8 + 201102500855934858550454541 z7+
160690304986111041435606573 z6 + 89327427260849279906023829 z5+
26483816147600192549015257 z4 + 7360189723504517245346047 z3−
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16937906838652616292784014 z2 + 11368376761270897290294372 z−
3294548979210279580266477).

b3 = −1
586404157185396631144063 (534238086871975200293692971 z11+

2257125852416175828475669710 z10 + 5041614758757760993767580908 z9+

7945701110770770964029068415 z8 + 9860654502732026849603165379 z7+

9820445750578804146999354351 z6 + 7843033068979099273400226251 z5+

5024279762970053953329899659 z4 + 2541931899658532932729209056 z3+

914538397740700159578095805 z2 + 177408679596998800187675900 z+

1520874502563183976856956),

b4 = 1
551909794998020358723824 (273257481667385829154701303 z11+

1311944937429603539611883763 z10 + 3222620979724854972171017811 z9+

5476270912044587105862528747 z8 + 7246321991604873688447256346 z7+

7731471785759360608336468902 z6 + 6681776514588058634621916474 z5+

4679990153051251450192701318 z4 + 2637614366064091656918707667 z3+

1134731186643184171384287987 z2 + 324680162060709820875199151 z+

43867090161673550706437811).

We note that the division of the set of trees having same valency lists as T into two
Galois orbits is not typical for this type of tree. A similar tree with negative valency
list {1, 2, 3, 4, 5} has a Galois orbit of order 24, as do those with negative valency lists
{1, 2, 4, 5, 6} and {2, 3, 4, 5, 7}, whereas the tree having negative valency list {1, 2, 3, 4, 6}
behaves like T . Another mysterious phenomenon pointed out to me by J-M. Couveignes
is the remarkable similarity between the polynomials Q(z) and Q̃(z), whose three terms of
highest degree and three terms of lowest degree are equal, and whose difference is divisible
by (X − 1)3...

Example 2: We now consider an example of a dessin which is not a tree. Let D be given
by

The valency lists of D are V = {3, 0, 1, 1} and C = {1, 0, 0, 0, 0, 0, 0, 0, 1}. There are
in all three dessins having these valency lists; the other two are given by
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We apply the Gröbner basis method by specializing the vertex of valency 4 to 0 and
the vertex of valency 3 to 1. Then we find that the field of definition of D is of degree 3
and is given by

Q(z) = 147 z3 + 936 z2 + 1872 z + 1120.

For any root r of Q(z) set

Nr(z) = −459 r2 − 1260− 1716 r + 525 z2 + 350 rz2+

567 r2z + 2058 rz + 1680 z + 175 z3,

and

γr(z) =
Nr(z)

64(171477 r2 + 743823 r + 740530)(−10 z + 7 r + 18)
.

Then we obtain a clean Belyi function for each root by setting

βr(z) = −15882615z4(z − 1)3γr(z).

A reconstruction from the dessin from this Belyi function as in III, §1 shows that the root
of Q(z) which corresponds to the dessin D is the real root, approximated by −1.093425511.
The other two dessins are given by setting r to be the complex conjugate roots of Q(z).

Example 3: We treat here the example given in [SV]. Let T be the tree with positive
valency list V + = {1, 1, 1} and negative valency list V − = {2, 2} given by

The system of equations RV +,V − is given by

P1(z) = z, P2(z) = z − 1 and P3(z) = z − C1,0
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and
Q1(z) = z2 + D1,1z + D1,0 and Q2(z) = z2 + D2,1z + D2,0.

There are exactly three solutions to these equations given as follows:

Q(z) = 25 z3 − 6 z2 − 6 z − 2,

and C1,0, D1,1, D2,1 and D1,0 must take the values

2r, 2/3− (4/3)r, −2/3− (5/3)r, and 1/3− (5/3)r2 + (2/3)r

respectively. Thus if for a root r of Q(z) we set

Pr(z) =
(
z2 + (

2
3
− 4

3
r)z + (

1
3

+
2
3
r − 5

3
r2)

)(
z2 − (

2
3

+
5
3
r)z + r

)2
,

we obtain a Belyi polynomial for each r by setting

βr(z) = 1− ( 2
Pr(0)

Pr(z)− 1
)2

.

The cubic equation Q(z) has one real root r0, and the Belyi function βr0(z) corresponds
to T . The remaining two complex conjugate roots of Q(z) give the trees

(note that complex conjugation corresponds to reflecting a plane dessin over the real line).

Example 4: The calculation for the following dessin is quite complicated: it was performed
by the number theory group in Bordeaux.

All dessins having identical valency lists to this dessin are in its Galois orbit, which has
order 10. We give here a degree 10 polynomial whose roots describe the fields of definition
of the orbit:
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Q(z) = z10 + 1482 z9 + 1689948 z8 + 890151444 z7 + 363946250304 z6+
2267330869440 z5 − 1729356759663624 z4 + 75590803665798876 z3−
1899051199966144224 z2 + 7231520112142277952 z+
634545639784165885776.
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