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Abstract

Quasicrystals are a phase between crystals and amorphous materials, exhibiting
long-range order without periodicity. We review attempts to provide a theory of
electronic transport in quasicrystals that may generalize Bloch theory. To this
end, we introduce groupoid C*-algebras, and use these to develop Noncommu-
tative Topology. This can be used to obtain a noncommutative C*-algebra of
observables in the aperiodic case that is a generalization of its periodic counter-
part. The K-theory of this C*-algebra is used to obtain a labelling of the gaps
in the spectrum of one-electron Hamiltonians, and this labelling can be linked
to the value of the integrated density of states on the gaps. Finally, we study a
well-known one-dimensional quasiperiodic example.
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Chapter 1

Introduction

Intuitively, a crystal is thought of as a solid, in which the atoms are configured
in an ”ordered” way. This order is reflected by the discreteness of the diffraction
spectrum of a crystal, showing sharp spots (Bragg peaks), which is in contrast to
the continuous -”blurred”- diffraction spectrum of unordered materials such as
glass. For a long time, it was thought that the only way to get long range order
was by periodicity. Specifically, it was thought that periodicity was essential to
get a discrete diffraction spectrum. Since only 2−, 3−, 4− or 6−fold symmetry
are compatible with periodicity (the ”crystallographic restriction”), the only
symmetries that could occur in diffraction spectra were of this kind.

Therefore, it came as a surprise to the world of crystallographers when Schecht-
man et al reported in 1984 that they had made alloys of Al with 10-14 at.% Mn,
Fe or Cr showing a discrete diffraction spectrum with a forbidden five-fold sym-
metry. Their article Metallic Phase with Long-Range Orientational Order and
No Translational Symmetry meant a revolution in crystallography. Soon after-
wards, many others constructed alloys with forbidden symmetries, using various
techniques. Until now, five-fold, eight-fold, ten-fold and twelve-fold symmetries
have been observed. During the eighties and nineties, the quality of the samples
continued to increase, and the level of impurities has now reached the same level
as in classical crystalline samples.

The new discovered phase between crystal and amorphous metal was called
quasicrystal, and it is characterized by the fact that its diffraction spectrum is
on the one hand discrete, i.e., it consists δ-functions (the Bragg peaks), and on
the other hand shows a symmetry forbidden by the crystallographic restriction.
The structure of d-dimensional quasicrystals (e.g. d = 3) can be modeled by
projecting an n dimensional periodic lattice (with n > d) onto a d-dimensional
subspace. This ”projection method” can be used to obtain quasiperiodic point
sets, as we will show in Chapter 2. In this chapter, it is also shown that d-
dimensional tilings are an effective tool to describe quasicrystals. A different
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method to obtain quasiperiodic sets, the so-called substitution method, is also
explained. A one-dimensional quasiperiodic tiling called the ”Fibonacci chain”
will serve as a basic example of these constructions.

When the level of impurities in the quasiperiodic alloys gradually decreased, it
became possible to measure the physical properties of quasicrystals in a repro-
ducible way. Among the physical properties that are of interest are of course
the electronic transport properties. It appeared that quasicrystals generically
have the following electronic behaviour:

1. They have a very high resistivity, up to 103 times as large as the resistivity
of periodic alloys made of the same components.

2. The resistivity increases with improved sample quality, which indicates
that the conducting of electrons is mainly caused by impurities. Note
that in ordinary metals, the situation is the other way round.

3. The lower the temperature, the higher the resistivity. This is typical semi-
conductor behaviour; for metals, the situation is the opposite.

During the last decades, people have searched for explanations of this anomalous
behaviour. To set up a theory that describes electronic motion in quasicrystals,
one should try to generalize the methods that have already been developed for
crystals. Now the main tool to describe electronic motion in crystals is Bloch
theory, developed in the late twenties. It allows to compute the spectrum of
Hamiltonians describing the motion of an electron in a crystal, where the inter-
actions with other electrons and with phonons (lattice vibrations) are neglected.
Bloch theory can be used to show that in crystals, electronic wave functions are
extended, and that the spectrum of the one-electron Hamiltonian is absolutely
continuous, exhibiting a typical band structure. This band structure can be
used to obtain conductivity properties of the crystal.

However, Bloch theory cannot be applied to quasicrystals, because it crucially
depends on the periodicity of the medium. Therefore, to describe electronic
motion in quasicrystals, one has to find different methods.

In the late eighties, J. Bellissard proposed to use the mathematical framework of
Noncommutative Geometry, mainly developed by A. Connes, to describe elec-
tronic transport in aperiodic media. In 1994, his approach lead to a successful
explanation of the well-known plateaus in the plot of conductivity versus mag-
netic field of the Integer Quantum Hall Effect, explaining why these plateaus
are so robust under perturbations. For quasicrystals, his approach leads to the
labelling of the gaps in the spectrum of the one-electron Hamiltonian by the
value of the integrated density of states on these gaps. This is the main subject
of this thesis.

For this gap labelling, we only use Noncommutative Topology, which is simpler
than noncommutative geometry. The idea is to begin with a topological space
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X that is (locally) compact and Hausdorff. The topology is described by the
open subsets of X, and it can be shown that all topological data are carried
by the continuous, complex-valued functions on X. These functions form a
commutative algebra C(X) under pointwise multiplication, and one can give
this algebra the structure of a C*-algebra by defining involution ∗ and norm ‖·‖
in an obvious way. Now an important theorem by Gelfand and Naimark states
that every commutative C*-algebra can be seen as the C*-algebra of continuous
functions on a (locally) compact Hausdorff space, called the structure space.
This theorem can be used to form a dictionary between the topological and the
C*-algebraic side.

The philosophy of noncommutative topology is now to view the C*-algebra as
the main data, instead of the underlying space, and to generalize this to ar-
bitrary (not necessarily commutative) C*-algebras. An important theorem of
Gelfand and Naimark characterizes noncommutative C*-algebras by stating that
every C*-algebra is isomorphic to a C*-subalgebra of B(H), the C*-algebra of
bounded operators on some Hilbert space H. People have tried to find noncom-
mutative analogues of the structure space, and especially the pure state space
and the space of unitary equivalence classes of irreducible representations were
considered to be good candidates. These matters were developed mainly before
the eighties. We will review this in Chapter 3.

Then, during the eighties, A. Connes found a way to use noncommutative C*-
algebras to describe the topology of non-Hausdorff spaces. For non-Hausdorff
spaces, the C*-algebra of continuous functions is too small to carry all the
relevant topological information. However, it turned out that non-Hausdorff
spaces that are quotients by a certain equivalence relation can be described by
the groupoid C*-algebra of the equivalence relation. This noncommutative C*-
algebra contains all the relevant topological data. The above will be the subject
of Chapter 4.

To analyze topological properties, people often use certain topological invari-
ants. The noncommutative analogues of the structure space might serve as such
invariants. However, it turned out that there is a better topological invariant at
hand, namely K-theory. C*-algebraic K-theory consists of two functors, K0 and
K1, that assign abelian groups K0(A) and K1(A) to an arbitrary C*-algebra
A. We will mainly use the K0-group, whose elements are obtained from the
projections in a so-called stabilized version of the C*-algebra. This will be the
subject of Chapter 5.

An important example of a non-Hausdorff quotient space that can effectively
be described by noncommutative topology is the space of Penrose tilings. This
example, designed by A. Connes, will be the subject of Chapter 6. Penrose
constructed such a tiling of the plane in 1974. It was the first example of a
tiling by two different tiles that covers the plane in a way such that on the one
hand, the tiling is not periodic, but on the other hand, every finite patch in
the tiling repeats itself infinitely often. This tiling is an important example of
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a quasiperiodic tiling constructed by the substitution method, and it has been
used a lot to model two-dimensional quasicrystals. It turns out that the K-
theory of the noncommutative C*-algebra associated to the space of Penrose
tilings can be used to measure the density of the two different tiles in a Penrose
tiling.

The construction of the noncommutative space of Penrose tilings has been gener-
alized to arbitrary tilings by J. Kellendonk. This space, which basically consists
of all translates of a fixed d-dimensional tiling, is called the ”hull”. We define
this hull in Chapter 8, and form its noncommutative C*-algebra in the same way
as in Chapter 6. We will also compare the differences and similarities between
the hull and the space of Penrose tilings.

The physical motivation for the construction of the hull is the following: the
motion of an electron in a (quasi-)crystal can be modeled by the motion of
the electron on the tiling that is associated to the (quasi-)crystal. However,
keeping the electron in the origin and moving the tiling around will lead to an
equivalent description. Therefore, the set of all translates of the tiling can be
used to describe the motion of an electron in the tiling. We also define a discrete
version of the hull, to describe the discrete model of an electron hopping from
tile to tile. The discrete model is simpler to compute, and it turns out that it
contains the same data as the continuous model, which is reflected by the fact
that C*-algebra of the discrete hull is stably equivalent to the C*-algebra of the
continuous hull.

The abstract noncommutative C*-algebra of the hull turns out to be the C*-
algebra of observables. To show this, we first review Bloch theory in Chapter 7.
Then we use the translates of the resolvent of the periodic Hamiltonian to build
the C*-algebra of observables, which turns out to be isomorphic to C(B) ⊗ K,
the stabilized version of the commutative C*-algebra of continuous functions on
the Brillouin zone B. In Chapter 8, it is then shown that for a periodic tiling
by unit tiles, the C*-algebra of the hull reduces to the periodic C*-algebra of
observables. This justifies the fact that the C*-algebra of the hull can be seen
as the noncommutative generalization of the C*-algebra of observables to the
general, not necessarily periodic case. In other words, we have

commutative topology ←→ noncommutative topology
periodic media ←→ aperiodic media, (1.1)

where the right hand side is a generalization of the left hand side.

The question arises what we can do with this C*-algebra of observables. Of
course, we can try to classify different tilings using topological invariants such
as K-theory, but this will not help us in the description of electronic motion in
quasicrystals. However, it turns out that if an operator, such as a quasiperiodic
Hamiltonian, is ”affiliated” to a certain C*-algebra, its spectral projections on
gaps in the spectrum belong to this C*-algebra. Because the K0-group is con-
structed from equivalence classes of projections in the stabilized version of the
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C*-algebra, it can be used to label these gaps. Moreover, it turns out that via
an equation designed by Shubin in 1979, called ”Shubin’s formula”, a trace on
the K0-group links the gap labels with the value of the integrated density of
states on it. Now the density of states is an important quantity in solid state
physics, which is in fact accessible by experiments. Complete knowledge of the
integrated density of states gives complete knowledge of the spectrum, which
can in turn be used to derive conductivity properties of the medium. The above
is the subject of Chapter 9.

So it turns out that using an abstract topological invariant of a fairly abstract
C*-algebra can be used to describe electronic motion in quasicrystals, as a gen-
eralization of Bloch theory. However, there are some problems that prevent us
from obtaining quantitative results. For example, the gap labelling is not one-
to-one, which means that we only have a set of possible gap labels. We don’t
know which elements of this set actually occur as gap labels, because some gaps
may be closed. This problem, among others, is discussed in the last section for
the ”Almost Mathieu operator”, which describes a one-dimensional quasiperi-
odic model. In conclusion, noncommutative topology and K-theory prove to
be useful tools in the description of electronic motion in quasicrystals, but the
theory is yet far from complete.
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Chapter 2

Crystals and Tilings

In this chapter, we will show how crystals can be modeled by a point lattice, and
generalize this to aperiodic solids using Delone sets. We explain how diffraction
spectra can be used to determine the structure of solids. By proving the crystal-
lographic restriction, we see that the five-fold symmetry found by Schechtman
et. al. in 1984 [48] in diffraction spectra of certain alloys is in conflict with
periodicity. This shows that there exist aperiodic solids with long-range order,
nowadays called quasicrystals. We will model these solids using tiling theory,
and we’ll review two methods to obtain quasiperiodicity, namely the projec-
tion method and the substitution method. Finally, we review some electronic
transport properties of quasicrystals.

2.1 Mathematical Crystallography

Definition 2.1.1 A point set Λ ⊂ Rd is said to be discrete if for every x, y ∈
Λ, there exists a positive real number r, such that |x − y| ≥ 2r. If an r can be
found such that |x− y| ≥ 2r ∀x, y ∈ Λ, then Λ is uniformly discrete. A point
set Λ is called relatively dense in Rd if there is a positive real number R such
that every sphere of radius greater than R contains at least one point of Λ in
its interior. If Λ is both uniformly discrete and relatively dense, it is called a
Delone set or (R, r)-set.

Delone sets will be used to describe the positions of atoms in a solid.

Definition 2.1.2 A subset Γ ⊂ Rd is called a (Bravais) lattice if it is a free
Z-module generated by d linearly independent vectors, that is,

Γ = Zv1 ⊕ Zv2 ⊕ ...⊕ Zvd.
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Note that Γ can be seen as a discrete subgroup of Rd, isomorphic to Zd. There-
fore, the factor group Rd/Γ is compact. Orbits under the group action of Γ on
R
d are uniformly discrete subsets of Rd. Since the vectors vi span Rd, each orbit

lies relatively dense in Rd. Therefore, the orbits of a lattice are Delone sets. In
some cases, it will be useful to identify the orbit with the lattice itself, although
strictly speaking [49], we should reserve the name ”lattice” for the Z-module,
calling the (discrete) orbit of a lattice a point lattice.

Definition 2.1.3 A set S ⊆ Rd is called periodic if there is a nonzero vector
t ∈ Rd, called a period of S, such that S + t = S, where S + t is defined as

S + t := {s+ t | s ∈ S}.

S is called crystallographic if its periods form a lattice.

From the above definitions, it is clear that a point lattice is a crystallographic
set S. The symmetry group of S consists of translations (by periodicity), and
certain orthogonal transformations, i.e. combinations of reflections, inversions
and rotations. We will call the general group of isometric transformations that
leave the crystallographic set invariant the space group, and its subgroup of
translations the translation group.

Remark 2.1.4 Note that a lattice Γ can be identified with the translation
group of the point lattice.

Taking the quotient of the space group by the translation group, we get the
group of orthogonal symmetries, a subgroup of O(d), that is called the point
group of the set (these transformations always leave one point invariant). The
point group symmetries of a crystallographic set are restricted by the crystal-
lographic restriction:

Proposition 2.1.5 Let S be a crystallographic point set in Rd, and let R be an
orthogonal transformation that maps S into itself.

1. The order of R is finite, i.e. Rk = Id for some k ∈ N.

2. k is restricted to {1, 2, 3, 4, 6} in the case that n = 2 or n = 3.

In other words, only reflections and 2-,3-,4- and 6-fold rotations are possible.

Proof: The proof is taken from [49]. The first statement is clear, since the
periods of S form a Z-module of finite dimension d. For the second statement,
observe by a suitable choice of a basis in Rd, any orthogonal transformation R
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can be written as

R =


A1 0 . . . . . .
0 A2 0
... 0

. . .
... Ak


where each Ai can be either 1, -1 or a 2× 2-matrix of the form(

cos θ − sin θ
sin θ cos θ

)
and all other entries are zero. Since an orthogonal transformation of an n-
dimensional crystallographic set can also be written as an element of GL(n,Z),
we see that R is conjugate (by a change of basis) to an element in GL(n,Z). The
latter has integer valued trace, and since traces are invariant under a change of
basis, the trace of R is integer valued too. Thus, in dimension n = 2 or n = 3,
we get

2 cos θ ∈ Z.
Using that | cos θ| ≤ 1 ∀θ, it follows that cos θ ∈ {0,± 1

2 ,±1}, and we see that
θ ∈ {0, π, π/2, 2π/3, 2π/6}. �

Remark 2.1.6 If one regards a crystal as a crystallographic set with an atom
placed at each point, Proposition 2.1.5 states that a crystal with 5-fold or k-fold
symmetry, where k > 6, is impossible. However, we will see that nonetheless
there are solids with some sort of long range order (though not periodicity), that
exhibit these symmetries. These solids will be called quasicrystals; a precise
definition is given in the following section.

Definition 2.1.7 For a lattice Γ ∈ Rd, the dual lattice Γ∗ is defined as

Γ∗ :=
{
y ∈ Rd | x · y ∈ Z for all x ∈ Γ

}
. (2.1)

It follows immediately from the definition that the dual of a dual lattice is equal
to the original lattice, i.e.

(Γ∗)∗ = Γ.

Remark 2.1.8 In crystallography, the dual lattice is often called the recipro-
cal lattice. Just as the lattice can be seen as a group of translations acting on
the ”real” space Rd, the reciprocal lattice can be seen as a group of translations
acting on momentum space or k-space. In describing the reciprocal lattice, a
frequently used convention is to define Γ∗ as the space of vectors k ∈ Rd for
which, for all x ∈ Γ,

eik·x = 1. (2.2)

This definition of Γ∗ differs from the original one by a factor of 2π. It has the
advantage that in this way it is clearer that the dual lattice Γ∗ is essentially just
the Fourier transform of the ”real” lattice Γ.
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2.2 Diffraction

The symmetry properties of crystals have been extensively studied by looking
at their diffraction spectra. The following is a short introduction; for more
information, see e.g. [2, 3, 26, 49].

Figure 2.1: Discrete diffraction spectrum of a crystal, showing sharp spots (the
Bragg peaks), with 4- and 6-fold symmetry, respectively

Visible light or x-rays diffract when they meet an obstacle, and interference
of such waves leads to a diffraction pattern. In a similar way, the scattering
of electrons or neutrons is used to obtain a diffraction pattern, from which
properties of the structure of the object can be deduced. If the obstacle is a
crystal, the periodicity of the positions of the atoms leads to a discrete spectrum
with sharp peaks of high intensity, the so called Bragg peaks. This is due to
the famous Bragg condition, stating that only for rays with incident angle θ,
satisfying

nλ = 2d sin θ, (2.3)

a peak is formed in the spectrum. Here, n is an integer, λ is the wavelength
of the ray, d is the spacing between the atoms (the period of the point lattice),
and θ is the angle between the incident beam and the plane of reflection. Note
that in this formulation the crystal is regarded as a collection of parallel planes
consisting of atoms spaced a distance d apart. Furthermore, it is assumed that
the angle of reflection always equals the angle of incidence (specular reflection),
as is the case with ordinary reflection of light in a mirror. Of course, the planes
of reflection also differ by a spacing d, and it is clear that the reflected rays of
two different planes interfere constructively if and only if the path difference is
an integer multiple of the wavelength of the beam. Now, the path difference
between two consecutive planes is precisely 2d sin θ, and the Bragg condition
follows. The only problem is that there are in general many ways to regard a
crystal as a collection of parallel planes.

A condition equivalent to the Bragg condition is the Laue condition. The
von Laue approach has the advantage that we don’t have to divide the crystal
in parallel planes. One regards a crystal as a collection of microscopic objects
(atoms, ions or small sets of those), each placed at a point in a crystallographic
set. An incoming beam is scattered by these objects in all possible directions, so
no assumption of specular reflection is made. The only assumption is that the
wavelength of the scattered beam is the same as the wavelength of the incoming
beam, which was also implicitly assumed in the Bragg picture. This is the same
as assuming that the scattering is elastic, i.e. there is no energy of the incoming
beam transferred to the crystal. Now, if d is a displacement vector between
two scatterers, and n̂ is the direction of an incident ray, with wavelength λ and
wave vector k = 2πn̂/λ, a scattered ray will be observed in the direction n̂ if
and only if the path difference between the rays scattered by the two scatterers
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is an integral multiple of the wavelength, or

d · (n̂− n̂′) = mλ.

Multiplying both sides by 2π/λ gives

d · (k− k′) = 2πm,

where m is an integer. It easy to see that the generalization to a crystallographic
set of scatterers with lattice Γ yields

R · (k− k′) = 2πm, for all R ∈ Γ,

where m is an integer, or equivalently

ei(k−k
′)·R = 1, for all R ∈ Γ. (2.4)

Thus, constructive interference will take place if and only if the change in wave
vector, k− k′, is an element of the reciprocal lattice (cf. (2.2)). This is the
Laue condition. It is not difficult to show that the Laue condition and the
Bragg condition are equivalent, see [2].

The von Laue formulation has the advantage that one does not have to consider
planes in the crystal, and in this way it is more natural than Bragg’s formulation.
Now, consider an incident beam with wave vector k, and suppose the wave vector
k′ satisfies the Laue condition. Thus, in the diffraction spectrum, we see a peak
of intensity J(k′) at k′. This intensity is the square of the amplitude, i.e.

J(k′) = |A(k′)|2.

Now the amplitude A(k′) is the Fourier transform of the atomic distribution
ρ(x). Using the fact that

F(f ∗ g) = F(f)F(g),

where F denotes the Fourier transform and ∗ denotes the convolution product,
we get the following commuting diagram:

ρ(x) convolution //
OO

F
��

ρ(x) ∗ ρ(−x)
OO

F
��

A(k)
squaring // J(k)

(2.5)

We call this diagram a Wiener diagram, following [49]. Now the main problem
in using diffraction spectra to obtain the real structure of a crystal is the fact
that we only know the lower right corner of the diagram, and we want to know
the upper left corner. What we miss is a phase factor. There are ways to get
the unknown information by a ”direct method”, which means going via A(k),
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Figure 2.2: Diffraction spectra with eight-fold and ten-fold symmetry, respec-
tively

or by ”deconvolution” of ρ(x) ∗ ρ(−x), which is known as Patterson analysis.
We won’t go into detail; the main thing is that once we have the diffraction
spectrum, it is still difficult to determine the real crystal structure.

In Proposition 2.1.5, we have seen that for a crystallographic set, which is
periodic, the only rotation symmetries allowed are 2-,3-,4- and 6-fold. So if
one would find a crystal with a diffraction spectrum with, for instance, 5-fold
rotational symmetry, this would not be a true crystal, since it could not be
periodic by the crystallographic restriction. However, in 1984, Schechtman et
al. [48] found out that rapidly cooled alloys of Al with 10− 14 at.% Mn, Fe or
Cr form a structure with icosahedral symmetry, which was apparent in fivefold
symmetry axes in their electron diffraction spectra. This was, of course, a
revolution in crystallography: until then, it was believed that only true (i.e.,
periodic) crystals could have a discrete diffraction spectrum. Later, various
other alloys with symmetries forbidden by the crystallographic restriction were
produced [26], see Figure 2.2 for examples of diffraction spectra with 8- and
10-fold symmetry. The long range order in these alloys is not due to translation
invariance, like in crystals. Nevertheless, there is long range order, which can
be described by quasiperiodicity. Therefore, this new phase between amorphous
materials and crystallographic periodic order was called a quasicrystal.

Remark 2.2.1 It is important to realize that quasicrystals are truly different
from crystals. In particular, they cannot be described as crystals with defects
or impurities. There are various intermediate phases between ordered crystals
and unordered amorphous materials. On the one hand, amorphous materials
do not have a discrete diffraction spectrum, whereas, on the other hand, the
diffraction spectrum of a crystal is discrete. Solids in between, are often called
aperiodic [3]. As such, quasicrystals are aperiodic media, but they are the ones
that are closest to crystals, having a discrete diffraction spectrum, in contrast
to amorphous materials. In fact, the only property of crystals that quasicrystals
don’t have is periodicity.

2.3 Tilings

A useful concept of describing a crystal is by associating a tiling to it. A two-
dimensional tiling is essentially a covering of the plane by tiles, such that they
do not overlap, and such that there are no gaps between them. Later, we
will give a precise definition. The concept of a two-dimensional tiling can, of
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course, be extended to higher dimensions, and in general we will think of tiles as
polyhedra. In crystallography, one can associate a tiling to a lattice by defining
a unit cell as a subset of Rd whose edges are parallel to the basis vectors of
the lattice. These unit cells then form tiles, which form a periodic tiling of Rd,
since the lattice consists precisely of the periods of a crystallographic set. Note
that there are many ways to define the unit cell, so that the tiling associated to
a lattice is in no sense unique. Let us now give a precise definition of a tiling.

Definition 2.3.1 A tiling T is a countable set of closed subsets ti of Rd,
T = {t1, t2, ...}, each of positive Lebesgue measure, such that ∪∞i=1ti = R

d and
(ti\∂ti) ∩ (tj\∂tj) = ∅ if i 6= j, i.e. the tiles do not overlap, but can have a
boundary ∂t in common.

Two tiles t1 and t2 are congruent if there is a symmetry transformation R
(i.e., R is a rotation and/or a translation), such that t1 = Rt2. If t1 and t2
are congruent, they are copies of the same tile t, called a prototile. Note
that a prototile is nothing more than an equivalence class under congruence.
All tilings we consider will have a finite set of different prototiles. Without
this assumption, it would be possible to have any kind of long range order.
Furthermore, we will assume that every tile is homeomorphic to the closed unit
disk B1(0). Practically, this means that tiles contain no ”holes”. Moreover, we
assume that given a tile, its boundary can only be covered by other tiles in a
finite number of ways (see [40]).

We have remarked already that one can associate a tiling to a lattice. An
elegant choice is the Voronoi construction. We will apply this construction
to a Delone set, of which a point lattice is a special example.

Definition 2.3.2 Let Λ ⊂ Rd be a Delone set. The Voronoi cell V (x) of a
point x ∈ Λ is defined as the subset of points in Rd that lie at least as close to
x as to any other point of Λ, i.e.

V (x) :=
{
v ∈ Rd | |x− v| ≤ |y − v| for all y ∈ Λ

}
. (2.6)

It is clear that this construction precisely yields a tiling by convex polyhedra
without overlaps or gaps (see Figure 2.3). In particular, in this way a crystal
can be modeled [2]. In the case of a point lattice, the Voronoi cell is also called
a Wigner-Seitz cell.

Figure 2.3: Construction of a Voronoi cell

Remark 2.3.3 If Γ is a lattice in Rd, the quotient Rd/Γ, which is a compact
group, can be seen as a unit cell. We will identify Rd/Γ with the Voronoi unit
cell V around the origin.
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The Voronoi construction can also be applied in reciprocal space. The Voronoi
cells of the dual lattice Γ∗ are called Brillouin zones. The first Brillouin zone
B, which is the Voronoi cell of k = 0, will be identified with Rd/Γ∗.

The Voronoi construction is a way to obtain tilings from Delone sets. On the
other hand, starting with a tiling, one can associate a Delone set to it by punc-
turing each tile at a particular place (or at more places), and calling these
punctures the points of the Delone set. For example, for a tiling by polyhedra,
the vertices of the polyhedra form a point lattice. In this way, we obtain a
correspondence between tilings and Delone sets, which is of course in no sense
one-to-one. For example, starting with a periodic tiling of regular triangles in
R

2, one can view the vertices of the triangles as a point lattice. The Voronoi
tiling of this point lattice is a tiling by regular hexagons, which is of course
different from the original tiling.

Of course, if one had taken the middle points of the triangles as point lattice and
then carried out the Voronoi construction, one would have obtained the original
tiling. However, in general the tiles are not regular polyhedra, and in that case
the tiling is not a Voronoi tiling of some Delone set. We will frequently use the
correspondence between Delone sets and tilings. In particular, many properties
defined for tilings also hold for their associated Delone set, and vice versa.

Starting with a tiling T of Rd, we can define for any x ∈ Rd T + x by

T + x := {t+ x | t ∈ T}.

Evidently, T + x is again a tiling of Rd.

Definition 2.3.4 A tiling T is periodic if there is an x ∈ Rd such that T+x =
T . If T + x 6= T for any x ∈ Rd, T is called aperiodic.

Note that in this definition, a periodic tiling in d dimensions does not necessarily
exhibit periodicity in d independent directions. Periodicity in one direction is
enough. However, in most cases, we will see a periodic tiling T as a tiling
corresponding to a point lattice Γ, such that the tiles of T are copies of the unit
cell V = R

d/Γ.

2.4 Quasiperiodicity

Next, we will focus on tilings that serve as a model for quasicrystals, i.e.
quasiperiodic tilings. Quasiperiodicity comes from the theory of almost peri-
odic functions, developed in the 1930’s by Harald Bohr, the younger brother of
Niels Bohr (see [4] and the references therein). The basic example of an almost
periodic function is

f(x) := sin(x) + sin(τx). (2.7)
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If τ is rational, f(x) is clearly periodic. However, if τ is irrational, for example

τ =
1 +
√

5
2

,

the famous golden ratio, f(x) is not periodic anymore, lacking translation in-
variance over some period. Nevertheless, for every ε > 0, one can find t ∈ R such
that |f(x)− f(x+ t)| < ε, for all x ∈ R. Moreover, such ”almost-translations”
lie relatively dense in R, which is reflected in the following definition:

Definition 2.4.1 A continuous function f : R→ R is almost periodic if for
every ε > 0, there is a δ > 0, such that every interval [x0, x0 + δ] contains at
least one t such that |f(x)− f(x+ t)| < ε, for all x ∈ R.

Almost periodic functions can be approximated by trigonometric polynomials,
generalizing the concept of Fourier series. In these generalized Fourier series, the
base frequencies are pairwise incommensurate. If the number of base frequencies
is finite, as in the example above, the function is called quasiperiodic. A
quasiperiodic function can always be seen as a section of a periodic function in
more variables. For example, the above function f(x) can be seen as

f(x) = sin(x) + sin(y) �y=τx .

This concept can also be used to define obtain quasicrystallographic sets. Start-
ing with a crystallographic set in Rn, one can obtain a quasicrystallographic set
in Rd, with d < n, by taking a suitable section. This is called the cut and
project method, or simply the projection method. The basic example is
the so called Fibonacci chain, treated in [4, 49, 26] and by many other authors.
We start with the lattice Z2 in the plane. We cut the plane by a line with
irrational slope, called E‖. Next, we define E⊥ to be the line perpendicular to
E‖ through the origin, and restrict it to a ”window” or ”acceptance domain”
M , for example with the width of the unit cell. In this way, we form a strip
parallel to E‖. We project all points inside the strip to E‖, hereby obtaining a
one dimensional sequence of intervals, and it is easy to see that this sequence is
periodic if and only if the slope of the E‖ is rational. If the slope of E‖ is 1/τ ,
we obtain a Fibonacci string of long (L) and short (S) intervals, which differ
by a factor τ (see Figure 2.4). This sequence is quasiperiodic. An example of a
Fibonacci string is

...LSLLSLSLLSLLSLSLLSLSLS... (2.8)

Note that although the Fibonacci string is one-dimensional, it can be used in the
analysis of three-dimensional quasicrystals that are periodic in two directions.
These quasicrystals can be seen as Fibonacci chains of periodically arranged
layers.
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Figure 2.4: Fibonacci chain obtained via the projection method

The projection method can be generalized to other dimensions (see e.g. [11]).
We define it in the following way:

R
d

R
d × Rn

π‖oo π⊥ //
R
n

Λ(M)

∪

OO

Γ
π‖oo

∪

OO

π⊥ // M

∪

OO (2.9)

Here, Γ is a point lattice in Rd×Rn, and π‖ and π⊥ are the obvious projections.
π‖ restricted to Γ is injective, and π⊥(Γ) is dense in R

n. R
d is called the

”physical space”, and Rn is called the ”internal space”. For a subset M of
the internal space Rn (the ”acceptance domain”), the point set Λ(M) ⊂ Rd is
defined as

Λ(M) := {π‖(a) | a ∈ Γ such that π⊥(a) ∈M}.

Note that for every a ∈ Γ, we have

Λ(M + π⊥(a)) = Λ(M) + π‖(a).

In this way, an irrational cut of an n + d-dimensional periodic point lattice Γ
leads to a d-dimensional quasiperiodic point set Λ(M). Of course, one can try
to approximate a quasicrystal by looking at rational cuts. In the above example
of the Fibonacci string, one can look at 1

1 ,
2
1 ,

3
2 ,

5
3 , . . . , using the fact that the

golden ratio τ can be expressed as the following continued fraction:

τ = 1 +
1

1 + 1
1+ 1

1+...

,

cf. below. It is clear that the closer the rational number gets to τ , the more the
cuts coincide. However, the rational cut is periodic, so the closer the approxi-
mation is, the larger the period. In general, this means that we can approximate
a quasicrystal by crystals with very large unit cells. In particular, we can com-
pute properties (for example electronic properties, such as conductance) of the
periodic approximants, and see if the properties of the quasicrystal can be seen
as a limit case in some way [54].

Let’s have another look at the Fibonacci string. Originally, the Fibonacci num-
bers Fn were defined by the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, ..., (2.10)

or, recursively, by
Fn+1 = Fn + Fn−1, (2.11)
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with initial values F1 = 1; F2 = 1. Then τ is the limit

τ = lim
n→∞

Fn+1

Fn
,

which is an alternative way to write the above continued fraction. The Fibonacci
numbers can be considered to be counting the total number of intervals (L and
S) under the growing condition

L 7→ LS; S 7→ L. (2.12)

In this way, we can build a Fibonacci string by substituting every L and every
S in each step according to the rules (2.12). We get:

S

L

LS

LSL

LSLLS

LSLLSLSL

LSLLSLSLLSLLS

... (2.13)

One can show that an infinite Fibonacci string generated by the above substi-
tution method can always also be generated by the projection method [49].
Note that from the substitution scheme, it is immediate that every S is always
followed by an L, i.e. SS never occurs.

The substitution method can be generalized to other substitutions, and to higher
dimensions. An important 2-dimensional example of a substitution tiling is the
Penrose tiling, which we will describe later in detail (cf. Chapter 6).

2.5 Properties of quasicrystals

We have described the structure of a quasicrystal as it arises from its diffraction
spectrum. Let us summarize the properties that characterize a quasicrystal (see,
for example, [54]):

1. The diffraction spectrum is discrete, i.e. it exists of δ-functions (the Bragg
peaks).

2. The positions of the δ-functions can be specified with a set of n integers,
where n is bigger than the spatial dimension d of the quasicrystal.

3. The diffraction pattern has a rotational symmetry forbidden by the crys-
tallographic restriction.
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The second point describes the fact that a quasicrystal can be obtained as a
cut of a higher dimensional point lattice. For example, For a 3-dimensional
quasicrystal, the diffraction spectrum can be generated by 6 basis vectors.

Remark 2.5.1 Note that it is in principle very difficult to predict how a qua-
sicrystal ”grows”. This is clear in the one-dimensional case. If we consider a
finite string of a periodic chain of L’s and S’s, for example

...LSLSLSLSLSLSL...,

we can predict that the next letter will be an S on both sides. However, if we
consider a Fibonacci string, for example

...LSLLSLSLLSLLS...,

it is impossible to say whether at the left side an L or an S has to be attached (on
the right side, of course, we know that the next letter will be an L, because SS
is forbidden in a Fibonacci chain). In general, we see that we cannot predict the
growth of a quasicrystal by looking at a finite patch. Instead, we have to have
knowledge of the whole quasicrystal to predict the growth. In particular, this
would imply that the place of a new atom depends on its interaction with all the
other atoms, instead of its interaction with only a finite (local) neighbourhood.
This is of course physically not very probable. For more on this interesting
problem, see [26].

Now, we would like to investigate other important properties of quasicrystals.
In particular, we would want to formulate a theory of electronic transport in
quasicrystals. Since quasicrystals are formed of metals, mostly with Al, their
resistivity was expected to be of the order of the resistivity of the crystalline
systems composed of the same metallic elements. However, in experiments, the
following facts have been observed for quasicrystals [54]:

1. In general, they have a very high resistivity, i.e. their conductance is very
low, compared to metals. Resistivity of quasicrystals at room temperature
is typically of the order of 10−3Ωcm or higher, compared to 10−6Ωcm for
metals.

2. The conductance lowers with improved sample quality, which indicates
that the conducting of electrons is mainly caused by impurities. Note
that in metals, the situation is the other way round, i.e. impurities lower
the conductivity.

3. The resistivity increases if one lowers the temperature, i.e. ∂ρ
∂T < 0. Once

again, for metals, the situation is the other way round, i.e. the resistivity
gets lower at lower temperatures.
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To develop a theory that can explain these facts, one looks mainly at the spec-
trum of a one electron Hamiltonian, and its density of states. For crystals, the
main tool in investigating electronic transport properties is Bloch theory, but
this cannot be applied to quasicrystals, because it depends crucially on the peri-
odicity of the crystal. In Chapter 7, we will define the spectrum and the density
of states, and review Bloch theory. Then we will try to generalize it to aperi-
odic solids, using operator-algebraic techniques and noncommutative topology.
Therefore, in the next chapters, we will introduce these techniques, and review
the construction of the noncommutative space of Penrose tilings by Connes [15],
which is in fact a starting point for the introduction of noncommutative topology
in the world of tilings and quasicrystals.

20



Chapter 3

C*-algebras and
noncommutative topology

C*-algebras have been extensively studied in the past decades, see e.g. [17,
18, 19, 38, 56]. Basically, a C*-algebra is a *-algebra that is also a Banach
space (i.e., a complete normed space), satisfying some conditions that link the
algebraic properties with the Banach space properties. The main examples of
C*-algebras are the set C(X) of continuous functions on a compact Hausdorff
space X, and the set B(H) of bounded operators on a Hilbert space H. The
former is commutative, whereas the latter is noncommutative.

One of the main advantages of C*-algebras is that due to the involution *,
there is a notion of self-adjointness in C*-algebra. Since in quantum physics,
observables are given by self-adjoint operators, the set of observables has a
natural C*-algebraic structure. In particular, one can define positivity in C*-
algebras. C*-algebras have been used to construct a solid mathematical basis for
Heisenberg’s formulation of quantum mechanics in terms of ”matrix mechanics”.
For more on C*-algebras in physics, see e.g. [25, 33].

In mathematics, one of the most important subjects where C*-algebras are
extensively used is noncommutative geometry, as developed by Connes [15]. We
will only look at some part of it, namely noncommutative topology.

The first step in the philosophy of noncommutative topology is to describe the
topological properties of a locally compact Hausdorff space X in terms of the
algebraic properties of the commutative C*-algebra associated toX that consists
of the continuous functions on X. In this way, we will get a ”dictionary” between
topology and algebra. Since every topological property of the space X can be
described in terms of algebraic properties of the C*-algebra, we can hope to use
the algebraic description as a definition for general, not necessarily commutative
C*-algebras. From a noncommutative C*-algebra, we can then go ”back” via
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the dictionary, obtaining a so called ”noncommutative” space, the structure
space of the C*-algebra. In most cases, the last step is not needed anymore,
and one just views the noncommutative C*-algebra itself as the noncommutative
space (although it is not a topological space itself). In particular, topological
invariants such as K-theory can be described in C*-algebraic terms, and may
then be generalized to a general K-theory for arbitrary C*-algebras.

Noncommutative topology turns out to be especially useful in describing topo-
logical properties of non-Hausdorff spaces. Since in a non-Hausdorff space, ba-
sically there are not enough open sets to separate points, the commutative
C*-algebra of continuous functions will not fully describe the topological prop-
erties in this case. However, for spaces X that can be seen as a quotient Y/R,
where R is an equivalence relation, it turns out that there is a noncommutative
groupoid C*-algebra C∗(R) that contains all interesting information. We post-
pone the the construction of groupoid C*-algebras to Chapter 4, treating the
non-Hausdorff case in Chapter 5.

Now, let us define what a C*-algebra is. We begin with the concept of a *-
algebra.

Definition 3.0.2 A *-algebra A is an associative algebra (over C) with an
involution, i.e., a map ∗ : A→ A satisfying (∀a, b ∈ A, ∀λ ∈ C):

1. (λa)∗ = λa∗;

2. a∗∗ = a;

3. (ab)∗ = b∗a∗;

To make a C*-algebra of it, we have to define a norm such that certain conditions
are satisfied:

Definition 3.0.3 A C*-algebra is a *-algebra A that is also a Banach space
(i.e. a complete normed space), such that ∀a, b ∈ A, the ”Banach algebra con-
dition” and the ”C*-condition” are satisfied:

‖ab‖ ≤ ‖a‖.‖b‖ (3.1)

‖aa∗‖ = ‖a‖2. (3.2)

Next, we will review the basic examples of commutative C*-algebras and non-
commutative C*-algebras. The basic theorems are Theorem 3.1.2 and Theorem
3.2.2. The first one states that indeed every commutative C*-algebra can be seen
as the C*-algebra of continuous functions on some locally compact Hausdorff
space, and is a justification for the existence of a ”dictionary” between topology
and algebra. The second one states that every noncommutative C*-algebra is a
*-subalgebra of the C*-algebra of bounded operators on some Hilbert space.
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3.1 The commutative case

Before we can develop a dictionary between the topological and the algebraic
points of view, we first need a bijective correspondence between the two sides.
Let us start with a topological space X that is compact and Hausdorff. Associ-
ated to this space X there is a *-algebra, namely C(X), the space of continuous
functions on X, equipped with pointwise multiplication and involution:

(fg)(x) := f(x)g(x).

f∗(x) := f(x).

We equip C(X) with the sup-norm, defined by

‖f‖∞ := sup
x∈X
|f(x)|.

In this norm, C(X) is complete, and it satisfies the Banach algebra condition
(3.1) and the C*-condition (3.2):

‖fg‖∞ = sup
x∈X
|f(x)g(x)| ≤ sup

x∈X
|f(x)||g(x)| ≤ ‖f‖∞‖g‖∞,

‖f∗f‖∞ = sup
x∈X
|f∗(x)f(x)| = sup

x∈X
|f(x)f(x)| = sup

x∈X
|f(x)|2 = ‖f‖2∞.

Thus, C(X) becomes a C*-algebra. Note that it is commutative, and that it
has a unit, 1X . So to each compact Hausdorff space X, a commutative, unital
C*-algebra can be associated. As we will see, the converse is also true.

Definition 3.1.1 Let A be a commutative C*-algebra with unit. The structure
space ∆(A) of A is defined as the space of characters of A, i.e., of nonzero
linear maps ω : A→ C for which, ∀a, b ∈ A,

ω(ab) = ω(a)ω(b). (3.3)

Since every ω ∈ ∆(A) is nonzero, it immediately follows from (3.3) that ω(I) =
1, where I ∈ A is the unit of A. It can be shown [32] that ∆(A) ⊆ A∗, where
A∗ is the dual of A. Now A∗ can be equipped with a topology, the so called
weak*-topology, where ωn → ω iff ωn(a)→ ω(a) for all a ∈ A (this topology
is essentially the same as the weak operator topology of Definition 4.2.7). There-
fore, ∆(A), equipped with the relative weak*-topology, is a topological space.
It can be shown [32] that ∆(A) is compact and Hausdorff in this topology.

Next, we embed A in A∗∗ by the map a 7→ â, where

â(ω) := ω(a). (3.4)

Restricting the domain of â to ∆(A) ⊆ A∗, this defines a function on ∆(A),
which is easily seen to be continuous in the relative weak*-topology: let a ∈ A.
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Then, if ωn → ω, by definition, ωn(b) → ω(b) ∀b ∈ A, in particular ωn(a) →
ω(a). But this means that â(ωn)→ â(ω), so â is continuous. Moreover,ˆ: A→
C(∆(A)), called the Gelfand transform, is a homomorphism of C*-algebras.
This follows easily by combining equations (3.4) and (3.3). In fact, we have the
following theorem of Gelfand and Naimark:

Theorem 3.1.2 Let A be a commutative C*-algebra with unit and let X =
∆(A) be its structure space. Then the Gelfand transform is an isomorphism
between A and C(X), the C*-algebra of continuous functions on X.

For the proof of this theorem, we refer to [32]. In categorical language, the theo-
rem can be refined as follows: Define CH as the category of compact Hausdorff
spaces and continuous mappings, and CCA as the category of commutative
unital C*-algebras and unit-preserving homomorphisms. Next, extend C to a
contravariant functor from CH to CCA, and ∆ to a contravariant functor from
CCA to CH. Then, the theorem states that C ◦∆ is similar to idCCA (see Def-
inition 4.1.10), restating that every commutative C*-algebra A is isomorphic to
C(∆(A)).

The converse is also true: ∆ ◦ C is similar to idCH , that is, every compact
Hausdorff space X is homeomorphic to ∆(C(X)). This can be seen by defining
the evaluation map ε : X → ∆(C(X)); x 7→ εx, with

εx(f) := f(x). (3.5)

Clearly, εx is a character for all x ∈ X, and ε can be shown to be the desired
homeomorphism.

In particular, two commutative C*-algebras are isomorphic if and only if their
structure spaces are homeomorphic, and, conversely, two topological spaces X
and Y are homeomorphic if and only if their associated function algebras C(X)
and C(Y ) are isomorphic. Hence we now have the required bijective correspon-
dence between the topological side and the algebraic side.

Remark 3.1.3 Theorem 3.1.2 can be extended to the case of non-unital com-
mutative C*-algebras. It can be shown that the structure space of a non-unital
C*-algebra A is locally compact and Hausdorff. In this case, the Gelfand trans-
form is an isomorphism between a C*-algebra A and C0(∆(A)), the C*-algebra
of continuous functions with values tending to zero at infinity, in the sense
that if f ∈ C0(∆(A)), ∀ε > 0, there is a compact K ⊂ ∆(A) such that
supx∈∆(A)\K |f(x)| < ε.

3.2 The noncommutative case

The basic example of a noncommutative C*-algebra is the algebra B(H) of
bounded operators on a Hilbert space H:
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Proposition 3.2.1 Let H be a Hilbert space. Then B(H) is a C*-algebra with
operator product and involution *: B(H) → B(H), defined by 〈ψ,A∗ϕ〉H :=
〈Aψ,ϕ〉H, for ψ,ϕ ∈ H, A ∈ B(H). The norm on B(H) is the operator norm

‖A‖op := sup
{
‖Aψ‖H | ψ ∈ H, ‖ψ‖H = 1

}
(3.6)

Proof: With this norm, B(H) satisfies (3.1) and (3.2):

‖AB‖op = sup
{
‖ABψ‖H | ψ ∈ H, ‖ψ‖H = 1

}
≤ sup

{
‖A‖op‖Bψ‖H | ψ ∈ H, ‖ψ‖H = 1

}
= ‖A‖op‖B‖op,

where the inequality comes from the fact that A ∈ B(H) is bounded. Moreover,
this leads to

‖A∗Aψ‖ = 〈Aψ,Aψ〉 = 〈ψ,A∗Aψ〉 ≤ ‖ψ‖.‖A∗Aψ‖ ≤ ‖A∗A‖.‖ψ‖2 ⇒

‖A‖2 ≤ ‖A∗A‖ ≤ ‖A∗‖.‖A‖. (3.7)

Therefore, ‖A‖ ≤ ‖A∗‖. Interchanging A and A∗ (which is allowed by the fact
that (A∗)∗ = A), we get

‖A∗‖ = ‖A‖. (3.8)

Finally, combining (3.7) and (3.8), we get

‖A∗A‖ = ‖A‖2

which is (4.5). Since the bounded operators on a Hilbert space form a Banach
space, B(H) is complete. �

In fact, the next theorem by Gelfand and Naimark states that every C*-algebra
can be seen as a *-subalgebra of the C*-algebra of bounded operators on some
Hilbert space, which shows that B(H) is indeed the basic example of a non-
commutative C*-algebra, just as C(X) is the basic example in the commutative
case.

Theorem 3.2.2 Every C*-algebra is isomorphic to a norm-closed *-subalgebra
of B(H), for some Hilbert space H.

The proof of this theorem uses the so called GNS-construction. We will postpone
the (sketch of the) proof until we have given the required definitions.

What we need is a noncommutative analogue of the structure space, as defined
in Definition 3.1.1 for the commutative case. This will be the noncommutative
space associated to a noncommutative C*-algebra A. There are three candi-
dates: first of all, the space Prim(A) consisting of all the primitive ideals of
A. Secondly, one has the space Â of equivalence classes (under unitary trans-
formations) of irreducible representations of the C*-algebra on a Hilbert space.
Thirdly, one might consider the space P (A) of all pure states on A. We will
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define all these objects, and indicate why these spaces could serve as noncom-
mutative structure space. We will see that there is a natural surjective map
from Â to Prim(A) and a natural surjective map from P (A) to Â:

Prim(A) Âoooo P (A)oooo (3.9)

In the commutative case, both maps become bijections, and all three candidates
reduce to the space ∆(A) of characters on A. In the noncommutative case, it
turns out that in general, Prim(A) is too small, whereas P (A) is too large, leav-
ing Â as the best candidate. Therefore, we will mainly focus on the irreducible
representations.

Unfortunately, it is difficult to formulate a noncommutative analogue for Theo-
rem 3.1.2. One would expect that a noncommutative C*-algebra A is isomorphic
to the C*-algebra C(Â,B(H)) of continuous functions on the noncommutative
structure space Â, with values in the C*-algebra of operators B(H) of Theorem
3.2.2. However, it is difficult to define continuity in this case, since different
classes of representations (which are the elements of Â) have different Hilbert
spaces on which they act. Therefore, we need the concept of Hilbert bundles.

But let us begin with some basic definitions.

Definition 3.2.3 A representation of a C*-algebra A on a Hilbert space H
is a *-homomorphism from A to B(H).

Note that the characters of Definition 3.1.1 can in fact be seen as representa-
tions on a one-dimensional Hilbert space H(1): recall that all finite-dimensional
Hilbert spaces of the same dimension n are isomorphic to Cn, i.e., a finite di-
mensional Hilbert space is, up to isomorphism, completely characterized by its
dimension. It follows that for an n-dimensional Hilbert space H(n), B(H(n)) =
B(Cn) = Mn(C), the algebra of n-dimensional matrices over C. In particular,
B(H(1)) = C, and hence the characters that form the commutative structure
space can be seen as representations on a one dimensional Hilbert space H(1).

Definition 3.2.4 A representation π of a C*-algebra A on a Hilbert space H is
called irreducible if the only closed subspaces of H that are stable under π(A)
are 0 and H.

Thus, an irreducible representation π of A on H cannot be ”reduced” to a direct
sum of two nonzero representations π1 and π2 on H1 and H2 respectively, such
that π1(A)H1 ⊆ H1 and π2(A)H2 ⊆ H2. Note that there is a similar notion of
irreducibility in group representation theory.

We have seen that the characters that form the structure space of a commutative
algebra can be seen as one dimensional representations. The converse is true
for irreducible representations [19]:
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Proposition 3.2.5 Every irreducible representation of a commutative C*-algebra
is one-dimensional, i.e., a scalar multiple of the identity.

The proof is immediate from Schur’s lemma, which, like its well known group-
theoretic equivalent, states that a representation π is irreducible if and only if
the only operators in B(H) that commute with π(a) for all a ∈ A are multiples
of the identity. A proof of Schur’s lemma can, for example, be found in [33].

Definition 3.2.6 Two representations π1, π2 of a C*-algebra on Hilbert spaces
H1,H2 respectively, are called unitary equivalent, denoted by π1 ∼u π2, if
there exists a unitary isomorphism U : H1 → H2 such that Uπ1(a)U∗ = π2(a)
for all a ∈ A.

Remark 3.2.7 Note that in the commutative case, by Proposition 3.2.5, two
irreducible representations are unitarily equivalent if and only if they are equal.
Therefore, in the case that A is commutative, the space Â of equivalence classes
of irreducible representations of A coincides with the space ∆(A) of characters
of A.

Of course, the next step is to define a topology on Â, such that it becomes a
locally compact space. We use a topology inherited from Prim(A). Therefore,
we first define what a primitive ideal is.

Definition 3.2.8 A left (right) ideal of a C*-algebra A is a norm-closed
subset J ⊆ A, such that for every j ∈ J , aj ∈ J (ja ∈ J), ∀a ∈ A. An ideal is
both a right and left ideal.

It is easy to see that the kernel of a *-homomorphism ψ : A→ B is an ideal in
A. In particular, for a representation π of a C*-algebra A on a Hilbert space H,
ker(π) is an ideal of A. This motivates the definition of a primitive ideal:

Definition 3.2.9 An ideal of a C*-algebra is called primitive if it is the kernel
of an irreducible representation. The set of all primitive ideals of a C*-algebra
A is denoted by Prim(A).

There is a natural surjection from Â onto Prim(A), given by [π] 7→ ker(π),
where [π] is the unitary equivalence class of an irreducible representation π of A.
Since unitarily equivalent representations have the same kernel, this surjection
is independent of the choice of representative in the equivalence class.

Next, we will topologize Prim(A). Following [19], given any subset W of
Prim(A), define the hull-kernel closure W of W to be

W :=
{
I ∈ Prim(A) | I ⊃

⋂
J∈W

J
}
.
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It can be shown [19] that this closure operator satisfies the Kuratowski closure
axioms, i.e.

1. ∅ = ∅;

2. W ⊃W ;

3. W = W ;

4. V ∪W = V ∪W .

Then we define the hull-kernel topology T on Prim(A) by

T := {Prim(A)−W |W ∈ Prim(A); W = W}.

Kuratowski has shown that this construction indeed gives a topology of open
subsets, whose closure operation is precisely the closure operation we began
with. The surjection [π] 7→ ker(π) of Â onto Prim(A) enables us to pull back
the hull-kernel topology to a topology on Â. It can be shown that in this
topology, Â is locally compact for every C*-algebra A[19]. However, in general,
Â will not be Hausdorff.

We now turn to the third candidate for the structure space, the space of pure
states P (A). To define states on a C*-algebra, we need the notion of positivity.
But first, we need to define the spectrum of an element a ∈ A.

Definition 3.2.10 Let A be a unital C*-algebra. The resolvent ρ(a) of an
element a ∈ A is the set of all λ ∈ C for which a − λI is invertible in A. The
spectrum σ(a) of a ∈ A is the complement of ρ(a) in C, i.e.

σ(a) := {λ ∈ C | a− λI is not invertible in A}.

It is easy to see that for a matrix M ∈ Mn(C), the spectrum σ(M) coincides
with the set of eigenvalues of M . However, in the infinite-dimensional case, the
situation is more complicated. We will see this in Chapter 7. In the case that
A has no unit, A can be enlarged to a C*-algebra with unit,

Ã := {a+ µI | a ∈ A, µ ∈ C}.

Then the spectrum of a ∈ A is defined as the spectrum of a as an element of Ã
(more generally, one can show that if A ⊆ B, then σA(a) = σB(a) for all a ∈ A).

Definition 3.2.11 An element a ∈ A is positive if a = b∗b for some b ∈ A.
Equivalently, a ∈ A is positive if a = a∗ and σ(A) ⊂ R+.

Note that this definition coincides with the usual one in the case that A = C(X):
a function f ∈ C(X) is positive if f(x) ≥ 0 ∀x ∈ X. Then f can be written as
f = |

√
f |2, with

√
f(x) :=

√
f(x). Defining g :=

√
f , we get for all x ∈ X:

f(x) = |g(x)|2 = g(x)g(x) = g∗(x)g(x) ⇒ f = g∗g.
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Definition 3.2.12 A state on a C*-algebra A is a linear functional ω : A→ C,
that is positive and normalized, i.e., ∀a ∈ A:

ω(a∗a) ≥ 0, (3.10)

‖ω‖ = 1. (3.11)

Here, the norm of ω is defined by ‖ω‖ := sup{|ω(a)| | ‖a‖ = 1}. The state
space S(A) of A is the space of all states on A.

Observe that the boundedness of ω is a consequence of its positivity [32], so
that the supremum in the definition of the norm exists. In the case that A has
a unit I, the supremum is reached for a = I, so in the unital case, we have

‖ω‖ = ω(I) = 1. (3.12)

Recall that a subset C of a vector space V is convex if ∀v, w ∈ C, ∀λ ∈ [0, 1],
the convex sum λv + (1− λ)w belongs to C.

Proposition 3.2.13 Let A be a unital C*-algebra. Then S(A) is a compact
convex set.

Proof: The proof of compactness is more or less the same as the proof of
compactness of ∆(A), the structure space in the commutative case. We refer
again to [32]. Convexity follows immediately from (3.12). In the case that A
has no unit, we use the fact that the convexity part of the proposition holds for
the unitization Ã. Restricting every state on Ã to a state on A, the convexity
part of the proposition holds for arbitrary C*-algebras. �

Definition 3.2.14 The boundary of a convex set K is the set of points that
cannot be written non-trivially as a convex sum of two other points. Elements
of the boundary of S(A), denoted by P (A), are called pure states, a state that
is not pure is called a mixed state.

Remark 3.2.15 The notion of a state is well known from quantum mechanics.
Here, a state is a vector ψ in a Hilbert space H with norm ‖ψ‖H = 1. The
quantum mechanical observables can be seen as selfadjoint operators on the
space of vector states. Note that each vector state ψ defines a state ωψ (in the
sense of Definition 3.2.12) on the C*-algebra B(H) by

ωψ(A) := 〈ψ,Aψ〉.

Here, A ∈ B(H), and 〈., .〉 is the inner product of H. Note that ωψ is automat-
ically positive, and that

‖ωψ‖ = ωψ(I) = ‖ψ‖2H = 1.
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The C*-subalgebra of B(H) consisting of selfadjoint operators can be seen as the
”C*-algebra of observables”. However, not all physical observables are bounded,
so this is not quite true. Later on, we will see how we can overcome this problem
in particular situations.

Example 3.2.16 [33] As an example, we consider the C*-algebra M2(C) of
2× 2 matrices over C. Using the fact that there is an isomorphism between the
elements B ∈M2(C) and the functionals φB on M2(C), given by

φB(A) = Tr(AB),

for all A ∈ M2(C) [18], the state space S(M2(C)) can be identified with the
collection of all positive 2×2 matrices ρ with Tr(ρ) = 1; in quantum mechanics,
these are called density matrices. Each ρ ∈ S(M2(C)) can be written as

ρ =
1
2

(
1 + x y + iz
y − iz 1− x

)
,

where x, y, z ∈ R. Positivity of this matrix corresponds to the constraint
x2 + y2 + z2 ≤ 1 in R3. Thus, S(M2(C)) can be identified with the
closed unit ball in R3. The pure states are precisely the matrices ρ for which
x2 +y2 +z2 = 1, so P (M2(C)) may be identified with the sphere S2 in R3. This
example clearly illustrates that the pure states form the boundary of a compact
convex state space.

We now turn to the GNS-construction. Given a state ω ∈ S(A), define the
subspace Nω, called the null space of ω, by

Nω :=
{
a ∈ A | ω(a∗a) = 0

}
. (3.13)

It is not hard to see that one can equivalently define Nω as

Nω =
{
a ∈ A | ω(a∗b) = 0 ∀b ∈ A

}
.

So if one multiplies an element a ∈ Nω by an arbitrary element c ∈ A, it
follows from the second definition of Nω that ca ∈ Nω, because ω((ca)∗d) =
ω(a∗(c∗d)) = 0 ∀d ∈ A, since ω(a∗b) = 0 ∀b ∈ A, in particular for b = c∗d.
Furthermore, by boundedness of ω (equation (3.11)), ω is continuous, which
implies that Nω is closed in A. Thus, we have:

Proposition 3.2.17 Nω is a left ideal of A. �

Next, we can define an inner product 〈., .〉ω on the quotient space A/Nω by

〈[a], [b]〉ω := ω(a∗b). (3.14)

Here, [a] denotes the equivalence class of a ∈ A with respect to the quotient.
By linearity of ω, 〈., .〉ω is independent of the choice of representative in the
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equivalence class. Note that 〈., .〉ω is positive since ω is positive, and that
〈[a], [a]〉ω = 0 if and only if [a] = [0], since we take the quotient. Therefore we
have an inner product on A/Nω. Next, define Hω as the completion of A/Nω
in the norm defined by the inner product. Hω is by definition a Hilbert space.
Finally, given ω ∈ S(A), we define a representation πω of A on A/Nω by:

πω(a)([b]) := [ab]. (3.15)

One can see that πω(a) ∈ B(A/Nω) ∀a ∈ A. Therefore, πω is continuous, so it
can be continuously extended to a map πω from A to B(Hω). Since πω clearly
is a *-homomorphism, πω indeed is a representation of A on Hω.

For every state ω ∈ S(A), there is a vector ξω ∈ Hω such that

〈ξω, πω(a)ξω〉 = ω(a), ∀a ∈ A. (3.16)

In the unital case, this vector is defined by

ξω := [I].

Note that πω(A)ξω = A/Nω is dense in Hω. This means that the vector ξω is a
so called cyclic vector for the representation πω, that is, the closure of πω(A)ξω
is equal to Hω. A representation π on a Hilbert space H is called cyclic if H
contains a cyclic vector for π.

The following proposition is an easy consequence of the definitions:

Proposition 3.2.18 A representation π of A on H is irreducible if and only if
every nonzero vector ξ ∈ H is cyclic for π. �

We have seen that for every state ω ∈ S(A) a representation πω on a Hilbert
space Hω can be constructed, with a vector ξω ∈ Hω that is cyclic for πω.
This construction of associating representations to states is called the GNS-
construction (GNS stands for Gelfand, Naimark and Segal). The converse
can also be realized: every non-degenerate representation π on a Hilbert space
H, together with a vector ξ ∈ H, defines a state ωπ,ξ by

ωπ,ξ(a) := 〈ξ, π(a)ξ〉H. (3.17)

Moreover, every state ω ∈ S(A) comes from a representation and a vector by
(3.16).

Remark 3.2.19 If we start with a non-degenerate representation π of A on H
and a vector ξ ∈ H that is cyclic for π, we can define a state ω by (3.17). Next,
we can define πω and ξω via the GNS-construction. Now, we have

〈ξ, π(a)ξ〉 = ω(a) = 〈ξω, πω(a)ξω〉,
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for each a ∈ A, and since π(A)ξ (respectively πω(A)ξω) is dense in H (respec-
tively Hω), it follows that there is an isomorphism Uof H onto Hω such that
Uπ(a)ξ = πω(a)ξω for any a ∈ A. It easily follows that U makes π and πω
unitary equivalent. In particular, if π is irreducible, every nonzero vector in H
is cyclic for π, so π is defined up to equivalence by any state associated to π.

One can define a universal representation π as the direct sum of all the GNS-
representations πω, ω ∈ S(A); note that π is defined on H := ⊕ω∈S(A)Hω.
We show that π is injective, and hence, that every C*-algebra A is isomorphic
to a subalgebra of B(H). Hereby we prove the Gelfand Naimark theorem,
Theorem 3.2.2:

Suppose that π(a) = 0 for some a ∈ A. This means that πω(a) = 0 for all
ω ∈ S(A). Hence πω(a)ξω = 0, which gives ‖πω(a)ξω‖2 = 0, or ω(a∗a) = 0 by
(3.16), for all ω ∈ S(A). Finally, this leads to ‖a∗a‖ = 0, from which it follows
that a = 0 by the C*-compatibility condition (3.2). This completes the proof of
Theorem 3.2.2. �

We already had a correspondence between states and representations via the
GNS-construction. It turns out that there is a correspondence between the
pure states ω ∈ P (A) and the unitary equivalence classes of irreducible repre-
sentations in Â. Recall that a projection p on a Hilbert space H is an operator
in B(H) such that p = p2 = p∗.

Proposition 3.2.20 A representation π of a C*-algebra A is irreducible if and
only if the only projections that commute with π(A) are 0 and 1.

Proof: This is just Schur’s lemma, together with the fact that p = p2 for any
projection p. �

Theorem 3.2.21 The GNS-representation πω of a state ω ∈ S(A) is irreducible
if and only if ω is pure.

For a proof, we refer to [33].

So there is a canonical map φ from P (A) to Â, which is surjective by Remark
3.2.19. We can define an equivalence relation ∼ on P (A) by

ω1 ∼ ω2 ⇐⇒ πω1 ∼u πω2 . (3.18)

If we denote the graph of this equivalence relation by R, it is clear that R is just
the kernel of φ, and thus there is a bijective correspondence between P (A)/R
(also denoted by P (A)/ ∼) and Â.

In our attempt to get a noncommutative analogue of Theorem 3.1.2, we define a
noncommutative version of the Gelfand transform (3.4),ˆ: A→ B(Â,⊕ω∈P (A)Hω)
by

â(π) := π(a). (3.19)
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We see that â(πω) ∈ Hω for each ω ∈ P (A), so different values of â lie in
different fibers of the bundle ⊕ω∈P (A)Hω. Therefore it is hard to see in what
way the Gelfand transform can be made continuous. We will not pursue this
subject; for more information, see [38, 55].
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Chapter 4

Equivalence relations,
groupoids and C*-algebras

In this chapter, we will develop the machinery needed to describe the non-
commutative topology of non-Hausdorff spaces that are quotient spaces by
some equivalence relation. Recall that in a non-Hausdorff space, there are
not enough open subsets to separate points. In particular, the C*-algebra
of continuous functions is too small to describe every topological aspect of a
non-Hausdorff space. We will show that an equivalence relation automatically
defines a groupoid, and define a noncommutative C*-algebra associated to this
groupoid. This noncommutative C*-algebra will contain the noncommutative
topological information about the non-Hausdorff quotient space.

4.1 The groupoid of an equivalence relation

In this section we define groupoids, and we will see in particular in which way
every equivalence relation automatically defines a groupoid. This section is
largely based on [44]. For a more recent reference, see [37].

A groupoid is a generalization of a group. The crucial difference is that in a
groupoid G, not every two elements need to be composable, i.e. the operation
(product, summation, composition, etc.) is not defined from G × G to G, but
only on a subset G2 of G × G. A good example is the path groupoid of a
space, which is the set G of paths on a topological space X, with composition.
Every path is a continuous function f : [0, 1]→ X. However, not all paths can
be composed with each other. This is only possible if the endpoint of the first
path is the starting point of the second path. Thus, we have:

G2 = {(f, g) ∈ G×G | f(1) = g(0)}.
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Every element f of G has an inverse, defined by f−1(t) = f(1 − t), and the
composition of a path f with its inverse is identified with the constant path on
f(0). These constant paths form the unit space G0 of the groupoid. We can
check that the above groupoid is indeed a groupoid according to the following
general definition:

Definition 4.1.1 A set G is a groupoid if there is a set G2 ⊆ G ×G, called
the set of ”composable pairs”, a product map G2 → G, (x, y) 7→ xy, and an
inversion map G→ G, x 7→ x−1 such that the following relations are satisfied:

1. (x−1)−1 = x;

2. If (x, y), (y, z) ∈ G2, then (xy, z), (x, yz) ∈ G2 and (xy)z = x(yz);

3. (x−1, x) ∈ G2 ∀x ∈ G and if (x, y), (z, x) ∈ G2, then x−1(xy) = y and
(zx)x−1 = z.

Additionally, we define the range of an element x ∈ G as R(x) := xx−1 and its
domain as D(x) := x−1x. We have the following easy consequence:

(x, y) ∈ G2 ⇐⇒ R(y) = D(x)

Note that for all x ∈ G, xD(x) = R(x)x = x. This leads to the definition of the
unit space G0 ⊂ G: G0 := D(G) = R(G). Here R(G) and D(G) are defined
as R(G) := {xx−1 | x ∈ G} and D(G) := {x−1x | x ∈ G} Since for all x ∈ G,
(x−1)−1 = x, R(G) and D(G) are equal and G0 is well defined.

As an alternative definition, one can see a groupoid as a category, in which G0

serves as the set of ”objects”. An element x ∈ G can be seen as a morphism
from D(x) to R(x), thus identifying the domain D with the ”source” map in
the category and the range R with the ”target” map in the category. Note that
a groupoid is just a special case of a category, because of the existence of an
inversion map. For more on categories, see e.g. [28].

Note that in the category formalism, one can see the elements of G as arrows
(or paths) from one point in G0 to another point in G0 (the ”base” points).
The product of two elements in G is then the composition of the corresponding
arrows. One can compose two arrows if and only if the endpoint of the first
arrow is the starting point of the second arrow. Every arrow has an inverse
arrow, and the elements of G0 are identified with the constant arrows. It is easy
to see that these arrows satisfy the relations of Definition 4.1.1. Thus we see
that the path groupoid defined above is indeed an example of a groupoid. In
particular, G0 may be identified with the topological space X. Note that if we
identify homotopic paths with each other, we get the fundamental groupoid
of X, which is a generalization of the fundamental group π1(X). Let’s consider
some other examples of groupoids:
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Example 4.1.2 A group G itself is of course an example of a groupoid. In this
case all elements are composable with each other, i.e. G2 = G×G. The subset
of units, G0, is just {e}, where e ∈ G is the unit element of the group.

Example 4.1.3 Consider a group S acting on a space X on the right. Denote
the image of x ∈ X under s ∈ S simply by x · s. Then X × S can be seen as a
groupoid, which we denote by G := X o S, if we define the following structure
on it: (x, s) and (y, t) are composable if and only if y = x · s, the product is
defined by

(x, s)(x · s, t) = (x, st),

and the inverse by
(x, s)−1 = (x · s, s−1).

Then it follows that R(x, s) = (x, e) and D(x, s) = (x · s, e), where e is the unit
of the group S. We see that the unit space G0 can be identified with X under
(x, e) 7→ x. X o S is called a (right) transformation groupoid. Similarly,
a left action of a group S on a space X defines a left transformation groupoid
S nX. Sometimes, we will explicitly denote the action of s ∈ S by αs, and in
this case, the groupoid is denoted by X oα S.

Definition 4.1.4 A groupoid is called principal if the map

(R,D) : G→ G0 ×G0 : x 7→ (xx−1, x−1x),

is injective.

Notice that a group with more than one element is certainly not an example of
a principal groupoid, as the map x 7→ (e, e) is not injective, unless G = {e}.
On the positive side, we have

Proposition 4.1.5 A transformation groupoid X o S is principal if and only
if S acts freely (i.e. x · s = x for some x implies s = e).

Proof: The map (R,D) : X × S → X ×X is given by (R,D)(x, s) = (x, x · s),
where we have identified the unit space with X. Now (R,D) is injective if
and only if (R,D)(x, s) = (R,D)(y, t) implies x = y and s = t. The first is
automatically satisfied, for the second, we must have that x · s = x · t implies
s = t. Multiplying from the right by s−1, we see that s = t if and only if
x = x · ts−1 means that ts−1 = e, which is precisely the definition of a free
action. �

Next, we introduce an example of a principal groupoid, which will play a very
important role in the philosophy of noncommutative topology. In fact, this
groupoid will be a crucial ingredient in the description of noncommutative
spaces. Recall the definition of an equivalence relation ∼ on a space X:
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Definition 4.1.6 An equivalence relation ∼ is a relation on a set X such
that the following holds:

1. x ∼ x ∀x ∈ X (reflexivity);

2. if x ∼ y then y ∼ x (symmetry);

3. if x ∼ y and y ∼ z then x ∼ z (transitivity).

The graph R of an equivalence relation ∼ is the subset of X ×X defined by

R := {(x, y) ∈ X ×X | x ∼ y}

Two elements x, x′ ∈ X belong to the same equivalence class, denoted by [x],
if and only if x ∼ x′. The set of all equivalence classes is denoted by X/ ∼ or
X/R.

Proposition 4.1.7 The graph R of an equivalence relation ∼ on a set X has
the structure of a principal groupoid.

Proof: Define the set R2 of composable pairs by

R2 :=
{(

(a, b), (b′, c)
)
∈ R×R | b = b′

}
Define a product map from R2 to R by (a, b)(b, c) := (a, c), and an inverse map
by (a, b)−1 := (b, a). Note that product and inverse are well defined due to the
transitivity and the symmetry of ∼ respectively. Then we have the following:

1. ((a, b)−1)−1 = (b, a)−1 = (a, b);

2. If
(
(a, b), (b, c)

)
,
(
(b, c), (c, d)

)
∈ R2, then

(
(a, c), (c, d)

)
∈ R2 and(

(a, b)(b, c)
)
(c, d) = (a, d) = (a, b)

(
(b, c)(c, d)

)
;

3.
(
(a, b), (a, b)−1

)
∈ R2 and

(
(a, b)−1, (a, b)

)
∈ R2 ∀(a, b) ∈ R, because

(a, b)−1 = (b, a). Moreover, if
(
(a, b), (b, c)

)
∈ R2 and

(
(d, a), (a, b)

)
∈ R2,

then (a, b)−1
(
(a, b)(b, c)

)
= (b, c) and

(
(d, a)(a, b)

)
(a, b)−1 = (d, a).

So R has the structure of a groupoid.

Now one can see that R(a, b) = (a, a) and D(a, b) = (b, b), so the unit space
R0 ∈ R is the diagonal in R and can be identified with the set X.

Next we show that R is a principal groupoid: let (a, b), (c, d) ∈ R such that
(R,D)(a, b) = (R,D)(c, d). This means that

(
(a, a), (b, b)

)
=
(
(c, c), (d, d)

)
∈

R0 × R0, or (a, b) = (c, d) in X × X. This means that (a, b) = (c, d) in R, as
R is a subset of X ×X. Therefore (R,D) is injective and thus R is a principal
groupoid. �

Using the fact that X ×X is the graph of the equivalence relation ∼ for which
x ∼ y, for all x, y ∈ X, we have the following easy consequence:
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Corollary 4.1.8 Let X be a space. Then X ×X is a principal groupoid, with
unit space X.

Definition 4.1.9 If G and H are groupoids, a map ϕ : G → H is called
a homomorphism (of groupoids) if ∀(x, y) ∈ G2,

(
ϕ(x), ϕ(y)

)
∈ H2 and

ϕ(x)ϕ(y) = ϕ(xy).

As a direct consequence of this definition, we have ϕ(G0) ⊆ H0, that is, ϕ(u) ∈
H0 ∀u ∈ G0. This follows from the fact that every u ∈ G0 can be written as
u = xx−1 for some x ∈ G. Therefore, we have ϕ(u)ϕ(x) = ϕ(xx−1x) = ϕ(x),
from which it follows that ϕ(u) ∈ H0.

Definition 4.1.10 Two homomorphisms ϕ,ψ : G → H are called similar
(ϕ ∼ ψ) if there is a map Θ : G0 → H such that ∀x ∈ G:

(Θ ◦R)(x)ϕ(x) = ψ(x)(Θ ◦D)(x).

G and H are called similar (G ∼ H) if there exist homomorphisms ϕ : G→ H
and ψ : H → G such that ϕ ◦ ψ ∼ idH and ψ ◦ ϕ ∼ idG.

Note that in a general category, the correct notion of a homomorphism is a func-
tor ϕ : G → H, for which the extra condition is necessary that ϕ(G0) ⊆ H0.
The similarity map Θ is just the categorical notion of a natural transforma-
tion [28].

We want to consider groupoids that have the structure of a topological space.

Definition 4.1.11 A topological groupoid is a groupoid G on which a topol-
ogy is defined that is compatible with the groupoid structure:

1. The inverse map G→ G; x 7→ x−1 is continuous.

2. The product map G2 → G; (x, y) 7→ xy is continuous, where G2 has the
induced topology of the product topology on G×G.

We have the following proposition:

Proposition 4.1.12 Let G be a topological groupoid. Then the following hold:

1. The inverse map is a homeomorphism.

2. The maps R : G→ G0 and D : G→ G0 are continuous.

3. If G is Hausdorff, then G0 is closed in G.
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4. If G0 is Hausdorff, then G2 is closed in G×G.

Proof: 1. and 2. are easy consequences of the definition.
3. If G is Hausdorff, then the diagonal ∆ is closed in G × G. Define a map
ψ : G → G × G by ψ(x) := (x, x−1). Then ψ−1(∆) = {x ∈ G | x = x−1} is
closed in G by continuity of ψ. But ψ−1(∆) is just G0, so G0 is closed in G.
4. If G0 is Hausdorff, then the diagonal ∆0 is closed in G0×G0. Define the map
ϕ : G × G → G0 × G0 by ϕ(x, y) := (D(x), R(y)). Then ϕ−1(∆0) = {(x, y) ∈
G × G | D(x) = R(y)} is closed in G × G by continuity of ϕ. But this is just
G2, so G2 is closed in G×G. �

4.2 Towards the C*-algebra of a groupoid

In this section, we will show how a C*-algebra can be constructed from a topo-
logical groupoid, and under which conditions this is possible. Again, this section
is largely based on [44].

A topological groupoid can have all sorts of topological features. In particular,
a topological groupoid G is locally compact if for each x ∈ G, there exists an
open set Ux with x ∈ Ux such that the closure of Ux is compact. On a locally
compact groupoid G, one can define the space Cc(G) of continuous functions on
G with compact support, that is:

Cc(G) := {f ∈ C(G) | ∃K ⊂ G, K compact, such that f ≡ 0 outside K}

Definition 4.2.1 A locally compact groupoid G is called R-discrete if its unit
space G0 is open in G.

Proposition 4.2.2 For an R-discrete groupoid G, R−1(u) and D−1(u) are dis-
crete ∀u ∈ G0.

Proof: Let x ∈ R−1(u)∩D−1(v) for u, v ∈ G0. Such an x defines a homeomor-
phism ψ : R−1(v) → R−1(u); y 7→ xy. Since G is R-discrete, G0 is open in
G, and therefore G0 ∩R−1(v) is open in R−1(v). But G0 ∩R−1(v) is just {v},
because if y ∈ G0 ∩ R−1(v), then y = R(y) and y ∈ R−1(v), so y = R(y) = v.
Now {x} = ψ({v}) is open in R−1(u), because ψ is a homeomorphism. So
R−1(u) is discrete. A similar argument gives that D−1(u) is discrete. �

Recall that on a group, we have the notion of a Haar measure, which is a left
invariant measure. We want to have a similar notion for groupoids.

Definition 4.2.3 Let G be a locally compact groupoid. A left Haar system
is a set of measures {λu | u ∈ G0} such that:
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1. The support of each measure λu is supp(λu) = R−1(u).

2. (continuity) ∀f ∈ Cc(G), the map G0 → C; u 7→ λ(f)(u) =
∫
f dλu is

continuous.

3. (left invariance) ∀x ∈ G, ∀f ∈ Cc(G),∫
f(xy) dλD(x)(y) =

∫
f(y) dλR(x)(y)

Remark 4.2.4 Note that 1. is necessary for 3. to make sense: f(xy) can only
be defined for (x, y) ∈ G2. Luckily, due to 1., supp(λD(x)) = R−1(D(x)). Thus,
only for values of y in R−1(D(x)) there is a contribution to the integral. For
these y ∈ G, R(y) = D(x) holds, which is equivalent to (x, y) ∈ G2. Therefore
the integral is well defined.

The notion of a left Haar system is the extension for groupoids of the group
theoretic notion of a Haar measure. Remark 4.2.4 is the reason why in the case
of groupoids, one measure is not sufficient. Of course there is also a description
in terms of right invariant measures, but one can show that this is in fact
equivalent with the description in terms of left invariant measures, since every
left Haar system {λu} defines a right Haar system {λu} (where λu := (λu)−1)
under the inverse map x 7→ x−1, and vice versa.

Proposition 4.2.5 If a locally compact groupoid is R-discrete and it admits a
Haar system, then the latter is the counting measures system (up to scaling with
a continuous, positive function).

Proof: Let {λu} be a left Haar system of the R-discrete groupoid G. For
each u ∈ G0, λu has support R−1(u), and by proposition 4.2.2, R−1(u) and
D−1(u) are discrete. Thus every point in R−1(u) has positive λu-measure.
Let g := λ(χG0) =

∫
χG0dλu, where χG0 is the characteristic function of G0.

Note that g is a continuous and positive function on G0, and replacing λu by
g(u)−1λ(u), we may assume that λu({u}) = 1 for all u ∈ G0. Then by left
invariance, λv({x}) = 1 for any x ∈ R−1(v) ∩D−1(u). �

Basically, an R-discrete groupoid G can be seen as the union of discrete ”fibers”,
G =

⋃
u∈G0 R−1(u), each with its own counting measure λu.

Now if G is a group with a left Haar measure λ, one can define a convolution
product on the space Cc(G) by

(f ∗ g)(x) :=
∫
f(y)g(y−1x) dλ(y). (4.1)

For example, if G is the abelian group R, then (4.1) just becomes the usual
convolution product:

(f ∗ g)(x) =
∫
f(y)g(x− y) dy
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Next, we will use a similar construction to give Cc(G) a convolution product.
Recall from Definition 3.0.2 that a *-algebra is an associative algebra with in-
volution *.

Proposition 4.2.6 Let G be a locally compact groupoid with left Haar system
{λu | u ∈ G0}. Define a convolution product ∗ and an involution * on Cc(G)
by

(f ∗ g)(x) :=
∫
f(xy)g(y−1) dλD(x)(y) (4.2)

f∗(x) := f(x−1) (4.3)

With these operations, Cc(G) becomes a *-algebra.

The proof consists of checking the following (∀f, g, h ∈ Cc(G)):

1. The algebra is closed under multiplication, i.e. f ∗ g ∈ Cc(G).

2. The product is associative, i.e. f ∗ (g ∗ h) = (f ∗ g) ∗ h.

3. The involution really is an involution (under which the algebra is closed),
that is, all f, g ∈ Cc(G) satisfy 1., 2. and 3. of Definition 3.0.2.

4. the operations ∗ and * are continuous, i.e.: If fn → f and gm → g in
Cc(G), then fn ∗ gm → f ∗ g and f∗n → f∗ uniformly on a compact
subset of G.

We will not do these computations here. For a proof of a more general case,
see [44]. Note that a simple computation using the left invariance of the Haar
measure, shows that (4.2) reduces to (4.1) in the case that G is a group.

Now recall from Definition 3.0.3 that a C*-algebra A is a *-algebra with norm
‖.‖ (for which it is complete), such that for all a, b ∈ A the Banach algebra
condition and the C*-condition are satisfied:

‖ab‖ ≤ ‖a‖.‖b‖ (4.4)

‖aa∗‖ = ‖a‖2. (4.5)

So the only thing we need to make the *-algebra Cc(G) into a C*-algebra, is
a norm ‖.‖ in which the algebra is complete, and which satisfies the Banach
algebra condition (4.4) and the C*-condition (4.5). This norm is constructed by
means of representations of Cc(G) on a Hilbert space (recall that for a Hilbert
space H, the set of bounded operators B(H) form a C*-algebra).

Now before giving the definition of a representation of Cc(G), we first need to
define topologies on Cc(G) and B(H):
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Definition 4.2.7 Let H be a Hilbert space. Suppose that for each sequence
(An) in B(H), An → A if and only if 〈ψ,Anψ〉 → 〈ψ,Aψ〉 ∀ψ ∈ H. Then B(H)
has the weak operator topology.

Let K be a compact subset of G. Define a semi-norm on Cc(G) by

‖f‖K := sup
x∈K
|f(x)|

Then in the inductive limit topology, fn → f if and only if ‖f − fn‖K → 0
for every compact set K in G.

Remark 4.2.8 The inductive limit topology was originally defined on spaces
X that are inductive limits, i.e. there is a sequence (Xn) of subsets, such that
Xn ⊆ Xn+1 ∀n ∈ N, and such that X = ∪∞n=1Xn. Then a subset V is open in
X if and only if V ∩Xn is open in Xn for all n ∈ N. Since G is a locally compact
group, it can be approximated by compact subsets, and therefore it can be seen
as an inductive limit.

Using the above definition, we can now give the definition of a representation
of Cc(G) on a Hilbert space:

Definition 4.2.9 Let G be a locally compact groupoid with left Haar system
{λu}. A representation of the *-algebra Cc(G) on a Hilbert space H is a
linear map π : Cc(G) → B(H) that is continuous if Cc(G) has the inductive
limit topology and B(H) has the weak operator topology. Moreover, π satisfies
the following *-homomorphism conditions:

1. π(f ∗ g) = π(f)π(g);

2. π(f∗) = π(f)∗.

Now we define a norm on Cc(G) by

‖f‖ := sup
{
‖π(f)‖op | π is a representation of Cc(G)

}
(4.6)

Here, ‖π(f)‖op is the operator norm (3.6) of π(f) of B(H). Note that a priori,
the supremum need not exist. However, one can show [44] that we always have
‖π(f)‖ ≤ ‖f‖I , where the I-norm is defined as

‖f‖I := max
{

sup
u∈G0

∫
|f |dλu, sup

u∈G0

∫
|f |dλu

}
.

Therefore, the supremum will be finite.

Proposition 4.2.10 The completion of Cc(G) in the above norm (4.6) is a
C*-algebra, called C∗(G).
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Proof: We only have to show that the product and involution can be extended
from Cc(G) to C∗(G), and that the two conditions (4.4) and (4.5) are satisfied.
This follows from the fact that B(H) is a C*-algebra and the fact that each π
is a representation:

‖π(f ∗ g)‖op = ‖π(f)π(g)‖op ≤ ‖π(f)‖op‖π(g)‖op

‖π(f∗ ∗ f)‖op = ‖π(f∗)π(f)‖op = ‖π(f)∗π(f)‖op = ‖π(f)‖2op
for all representations π. Since the above is preserved under taking the supre-
mum, it follows that ‖f ∗ g‖ ≤ ‖f‖.‖g‖ and ‖f∗ ∗ f‖ = ‖f‖2. By definition,
C∗(G) is complete in the norm. �

There is another norm on Cc(G) that makes it into a different C*-algebra, the
so called reduced norm. The definition of this norm has the advantage that it
is less abstract then the above one. Let G again be a locally compact groupoid
with *-algebra Cc(G) and Haar system {λu}. For any u ∈ G0, we define the
Hilbert space Hu := L2(D−1(u), λu), the space of square integrable functions
on D−1(u) with respect to the measure λu. Next we define the reduced rep-
resentation πu of Cc(G) on Hu by

(πu(f)ψ)(x) :=
∫
f(xy)ψ(y−1) dλu(y). (4.7)

In this equation, f ∈ Cc(G), ψ ∈ Hu, and x ∈ D−1(u). Note that (4.7) is well
defined, since x ∈ D−1(u) and all y ∈ supp(λu) = R−1(u) ⇒ R(y) = u =
D(x) ⇒ (x, y) ∈ G2. Note that the representation πu can be equivalently
defined by

πu(f)ψ �D−1(u):= f ∗ ψ �D−1(u) .

In the case that G is an R-discrete groupoid, by Proposition 4.2.5, the Haar
system may be taken to be the counting measures system, so the integral in
(4.7) can be replaced by a sum:

(πu(f)ψ)(x) :=
∑

y∈R−1(u)

f(xy)ψ(y−1). (4.8)

Of course, in this case the Hilbert space Hu is the space of square summable
functions on D−1(u), so ψ ∈ `2(D−1(u), λu). We use (4.8) (or, in the more
general case, (4.7)) to define the reduced norm on the *-algebra Cc(G):

‖f‖red := sup
{
‖πu(f)‖op | u ∈ G0

}
. (4.9)

Again, ‖πu(f)‖op is the operator norm (3.6) of πu(f) of B(Hu). Note that since
for all f ∈ Cc(G), we have

‖f‖red ≤ ‖f‖,

the norm is bounded.
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Proposition 4.2.11 The *-algebra C∗red(G), defined as the completion of Cc(G)
in the reduced norm (4.9), is a C*-algebra.

Proof: The proof is essentially the same as the proof of Proposition 4.2.10.
�

Remark 4.2.12 Representation theory is of course not restricted to represen-
tations of Cc(G). One can also define groupoid representations and, as a special
case, group representations. A representation π of a groupoid G is a collection
of maps {π(x)}x∈G on a collection of Hilbert spaces {Hu}u∈G0 such that

1. π(x) : Hd(x) → Hr(x) is unitary.

2. π(xy) = π(x)π(y) whenever (x, y) ∈ G2.

3. π(x−1) = π(x)∗ for all x ∈ G.

The left regular representation πL is defined on the collection of Hilbert
spaces {L2(r−1(u))}u∈G0 by

πL(y)ψ(x) := ψ(y−1x). (4.10)

It takes some computations to show that πL is well defined. In the case that
G is a group, only one Hilbert space H := He needed, and things are a lot
easier. For example, the left regular representation of a group G just maps G
to B(L2(G)). The reduced representation of Cc(G) can actually be seen as an
integrated version of the left regular representation of G, see e.g. [37, 44]. As
a final remark, it should be noted that historically, group representation theory
came first, and was later generalized to the groupoid case. For more on this
subject, see e.g. [19].

Note that for all f ∈ Cc(G), we have

‖f‖red ≤ ‖f‖.

Of course, one wonders if there is a condition for the groupoid G such that
C∗red(G) and C∗(G) coincide, i.e. such that ‖f‖red = ‖f‖ for all f ∈ Cc(G). It
turns out that this is the case if G is an amenable groupoid [44, 1]. Amenability
was originally defined only for groups, and there are several equivalent defini-
tions [22]. We will define this concept in Chapter 7.

Summarizing, we see that the graph R of an equivalence relation can be given a
groupoid structure, which can define two different C*-algebras, namely C∗(R)
and C∗red(R), if the groupoid has a topology in which it is locally compact and
admits a Haar system. If, furthermore, the topology is such that the unit space
R0 is an open subset of R, then R becomes R-discrete and we can use the
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summation representation (4.8) instead of the integral representation (4.7) for
the construction of the reduced norm. Of course, the topology depends on the
nature of the space X on which the equivalence relation is defined, so we cannot
say much about the topology of R until the space X and the equivalence relation
∼ have been specified. Note however, that the topology on R doesn’t have to
coincide with the relative topology of the product topology on X ×X. For an
example of this phenomenon, see Chapter 6.
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Chapter 5

Invariants for
noncommutative topology

5.1 Possible topological invariants

Recall that to analyze non-Hausdorff spaces, the C*-algebra of continuous func-
tions does not contain enough information, because there are not enough open
sets to separate points. For non-Hausdorff spaces that are quotients Y/R it
is therefore useful to look at the noncommutative groupoid C*-algebra C∗(R),
which will be the true exposer of the topology of Y/R. Therefore, many authors
refer to this C*-algebra as the noncommutative space. The fact that C(Y/R)
is replaced by C∗(R) in the non-Hausdorff case is motivated by the fact that
for Hausdorff quotient spaces, C(Y/R) is ”Morita equivalent” with C∗(R), cf.
Section 5.2. To look at C∗(R) instead of C(Y/R) is the most important step in
the philosophy of noncommutative topology [15].

In topology, it is often useful to define invariants that can be used to character-
ize certain classes of topological spaces. For example, the fundamental group
π1(X) of an arcwise connected space X can be used to distinguish between con-
tractible spaces (with trivial fundamental group) and non-contractible spaces
(with nontrivial fundamental group). A deeper example is the classification of
knots by the Jones-Conway polynomial [28].

If we want to characterize (noncommutative) topological quotient spaces, we
want to distinguish between Hausdorff spaces and non-Hausdorff spaces. For
Hausdorff quotient spaces Y/R, the continuous functions already contain all
the relevant information, so as a first criterion, a ”good” topological invariant
should not distinguish between C(Y/R) and C∗(R) in the Hausdorff case. Since
in this case C(Y/R) and C∗(R) are actually Morita equivalent (cf. Section 5.2),
a good invariant has to label different Morita equivalence classes.
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A second criterion for a good invariant is that it has to distinguish between
C(Y/R) and C∗(R) in the case that Y/R is not Hausdorff. In particular, if Y/R
is trivial from a commutative point of view, i.e., C(Y/R) = C, as will be the
case in Chapter 6, our invariant should be nontrivial for the noncommutative
C*-algebra C∗(R). Until now, we have seen three possible candidates to serve
as a relevant invariant, namely the possible noncommutative structure spaces:
the set Prim(A) of primitive ideals of a C*-algebra A, the set Â of equivalence
classes of irreducible representations and the set P (A) of pure states on A. A
fourth candidate is K-theory, which will be defined in Section 5.2. Whereas the
set of primitive ideals is in general too small to serve as a good invariant, in the
next example, we will see that the set of pure states is too large, since it does
distinguish between C(Y/R) and C∗(R) in the Hausdorff case.

Example 5.1.1 This simple example of a noncommutative space is treated by
Connes in his book [15], where Y = {y1, y2}, with equivalence relation y1 ∼ y2.
Then X := Y/R ∼= {y1}, and C(X) = {f ∈ C(Y ) | f(y1) = f(y2)} ∼= C. Now
consider a function f ∈ C∗(R). Note that f has four possible values fij :=
f(yi, yj), with i, j ∈ {1, 2}. Therefore, we have a 2-dimensional representation
π1 : C∗(R)→M2(C):

π1 : f 7→
(
f11 f12

f21 f22

)
. (5.1)

Clearly, this representation is bijective, and thus C∗(R) is isomorphic to M2(C).
Note that π1 is an irreducible representation, and it can be shown that in fact
every irreducible representation is unitarily equivalent to π1. Thus, ̂C∗(R),
the space of unitary equivalence classes of irreducible representations of C∗(R),
consists of one point. In fact, there is a bijection between Y/R and ̂C∗(R):
defining the representation π2 of C∗(R) by

π2 : f 7→
(
f22 f21

f12 f11

)
, (5.2)

and noting that π2 is just π1 with the role of y1 and y2 interchanged, we see
that the unitary equivalence of π1 and π2 comes directly from the equivalence
y1 ∼ y2 in Y .

However, the pure state space of C∗(R) is larger: it can be identified with S2 by
Example 3.2.16. We see that the bijective correspondence between P (C∗(R))/ ∼
and ̂C∗(R) yields

P (C∗(R)/ ∼ ∼= ̂C∗(R) ∼= Y/R.

Of course, these spaces consist just of one point; we see that all interesting
information is contained in the C*-algebra C∗(R), which describes the noncom-
mutative topology of Y .

In the above trivial example of a Hausdorff quotient space, we see that the pure
state space distinguishes between the commutative C*-algebra of continuous
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functions and the noncommutative groupoid C*-algebra. Therefore, the pure
state space is not a good invariant, since it does not meet our first criterion. This
leaves Â, the set of equivalence classes of irreducible representations and K(A),
the K-theory of A. It can be shown that both invariants do not distinguish
between C0(Y/R) and C∗(R) for Hausdorff quotient spaces [15], and therefore
they satisfy the first criterion.

As for the second criterion, it is not clear whether the irreducible representations
of C∗(R) contain all the relevant information in the non-Hausdorff case. How-
ever, when C∗(R) is simple, i.e., it contains no non-trivial ideals, then ̂C∗(R)
is non-Hausdorff, and contains no information [15]. Note that this is a purely
infinite-dimensional phenomenon. This is one of the reasons that since the eight-
ies, people started to see C*-algebraic K-theory as the relevant invariant instead
of the space of equivalence classes of irreducible representations. Another prob-
able reason for this is that K-theory has become increasingly easier to compute,
making it convenient to handle. In the next section, we shall define this new
invariant, and we will use it in subsequent chapters to analyze noncommuta-
tive spaces. In what follows, we will no longer consider the noncommutative
structure space, looking only at the C*-algebra and its K-theory.

5.2 K-theory

The basic idea of K-theory is to assign abelian groups K0(A), K1(A), etc. to a
C*-algebra A, in such a way that Ki(A) ' Ki(B) when A ' B. We will mainly
use the K0-group, but for completeness, we give a description of all K-groups.
Our main reference for C*-algebraic K-theory will be [46].

Remark 5.2.1 Originally, K-theory was defined for topological spaces X in
terms of complex vector bundles over X. However, the group K0(X) can also
be defined using the continuous functions on X instead of X itself, and in this
way, we get an abelian group K0(C(X)), which is equal to the topological group
K0(X). This can then be generalized to noncommutative C*-algebras, yielding
the K-theory as we present it. From now on, we will only use C*-algebraic
K-theory and not topological K-theory, since we are primarily interested in the
C*-algebraic side.

Let A be a C*-algebra with unit. Observe that there are natural embeddings

A ⊂M2(A) ⊂M3(A) ⊂ ...
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by identifying a ∈ A with
(
a 0
0 0

)
∈ M2(A), and, more generally, (aij) ∈

Mn(A) with 
0

aij
...
0

0 . . . 0 0

 ∈Mn+1(A).

Next define M∞(A) by

M∞(A) := ∪∞n=1Mn(A),

respecting the inclusion defined above. Observe that for every element a ∈
M∞(A), there is a k <∞ such that a ∈Mk(A). We now look at the collection
P1(A) of projections in A, i.e. elements p ∈ A such that p2 = p∗ = p. We define
the following three equivalence relations:

1. (homotopy equivalence) p ∼h q if there exists a continuous path p̃ : [0, 1]→
P1(A) of projections such that p̃(0) = p and p̃(1) = q.

2. (unitary equivalence) p ∼u q if there is a unitary u ∈ A such that q = upu∗.

3. (Murray-von Neumann equivalence) p MvN∼ q if there exists a v ∈ A such
that p = v∗v and q = vv∗.

Proposition 5.2.2 Let A be a unital C*-algebra, and let p, q be projections in
A. We have the following implications:

1. ‖p− q‖ < 1 =⇒ p ∼h q;

2. p ∼h q =⇒ p ∼u q;

3. p ∼u q =⇒ p
MvN∼ q.

Proof: [46] The proof consists of easy computations. For example, to prove the
third implication, suppose that q = upu∗, where u ∈ A is unitary. Now if we
define v := up, it is easy to see that v∗v = p and vv∗ = q. �

In particular, we see that if we perturb a projection in a norm continuous way,
the perturbed projection is equivalent to the original one. The implications the
other way are in general not valid. However, if we look at projections in the
matrix algebras Mn(A), we see that all three equivalence relations coincide:

Proposition 5.2.3 Let A be a unital C*-algebra, and let p, q be projections in
A. Then the following holds:
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• If p MvN∼ q in A, then
(
p 0
0 0

)
∼u
(
q 0
0 0

)
in M2(A).

• If p ∼u q in A, then
(
p 0
0 0

)
∼h
(
q 0
0 0

)
in M2(A).

Proof: The proof is again an easy computation [46]. To prove the first impli-
cation, suppose that p = v∗v and q = vv∗ for some v ∈ A. Next, define

u :=
(

v 1− q
1− p v∗

)
.

One can show that u is unitary (i.e. u∗u = 1), and

u

(
p 0
0 0

)
u∗ =

(
q 0
0 0

)
.

For the second implication, suppose that there is a unitary u ∈ A such that
p = uqu∗. One must first verify that(

u 0
0 u∗

)
∼h
(

1 0
0 1

)
,

i.e. there is a continuous path of unitaries w(t) such that

w(0) =
(

1 0
0 1

)
, w(1) =

(
u 0
0 u∗

)
.

Next, define a path p̃(t) := w(t)
(
p 0
0 0

)
w(t)∗. Then one can show that p̃(t) is

a projection for all t, and that p̃(0) =
(
p 0
0 0

)
and p̃(1) =

(
q 0
0 0

)
. �.

Now if we define

Pn(A) := P (Mn(A)), and P∞(A) := ∪∞n=1Pn(A),

we have

Corollary 5.2.4 The equivalence relations ∼h, ∼u and MvN∼ coincide on P∞(A).

This is an immediate consequence of Proposition 5.2.2 combined with Proposi-
tion 5.2.3. As a result, we can denote the equivalence relation on P∞(A) by ∼.
In particular, we have equivalence classes of projections [p] ∈ P∞(A)/ ∼.

Remark 5.2.5 For a C*-algebra without a unit, it is of course impossible to
define unitary equivalence. Therefore, Murray-von Neumann equivalence is nec-
essary to extend the construction of the K0-group to the non-unital case.
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Next, we consider again a unital C*-algebra A. Note that for p ∈ Pn(A) and
q ∈ Pm(A),

p⊕ q :=
(
p 0
0 q

)
is again a projection, i.e. p ⊕ q ∈ Pn+m(A). Observe the following facts: let
p, q, r ∈ P∞(A) (note that p ∈ P∞(A) means that p ∈ Pn(A) for some n ∈ N).
Then we have:

1. p⊕ 0 ∼ p;

2. p⊕ q ∼ q ⊕ p;

3. (p⊕ q)⊕ r = p⊕ (q ⊕ r);

4. if p ∼ p′ and q ∼ q′, then p⊕ q ∼ p′ ⊕ q′;

5. if pq = 0, then p+ q ∼ p⊕ q.

Now we can define an operation + on P∞(A)/ ∼ by

[p] + [q] := [p⊕ q], (5.3)

and by the above facts, this is a well defined, abelian operation. So we have an
abelian semigroup (i.e. a group without inverses)

S(A) := (P∞(A)/ ∼,+), (5.4)

To get the abelian group K0(A), we use the so called ”Grothendieck construc-
tion”. Given an abelian semigroup (S,+), consider the equivalence relation ∼G
on S × S defined by

(x, y) ∼G (x′, y′)⇐⇒ ∃z ∈ S such that x+ y′ + z = x′ + y + z. (5.5)

Define
G(S) := S × S/ ∼G,

and write 〈x, y〉G for the equivalence class of (x, y) under ∼G. The operation
+, defined by

〈x, y〉G + 〈x′, y′〉G = 〈x+ x′, y + y′〉G,

is well defined, and turns G(S) into an Abelian group. Observe that the inverse
of an element 〈x, y〉G is given by −〈x, y〉G = 〈y, x〉, and that the unit element
is given by 0 = 〈x, x〉G. G(S) is called the Grothendieck group of S.

Remark 5.2.6 The Grothendieck construction is a generalization of the con-
struction of the group Z from the semigroup N. Z is constructed as N× N/ ∼,
where (n,m) ∼ (n′,m′) if n + m′ = n′ + m. Note that this is a simplification
of the Grothendieck construction, because there is no extra z needed for the
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equivalence relation. In other words, N has the cancellation property, i.e.
if x,y,z are elements in N with x + z = y + z, then it follows that x = y. It
is important to notice that in general a semigroup (S,+) does not have the
cancellation property. In particular, if we define the Grothendieck map by

γS : S → G(S), x 7→ 〈x+ y, y〉G,

which is additive and independent of y ∈ S, then it is easy to show that γS is
injective if and only if S has the cancellation property.

Definition 5.2.7 Let A be a unital C*-algebra. Then K0(A) is defined to be
the Grothendieck group of S(A) (defined in (5.4)), i.e.

K0(A) := G(S(A)). (5.6)

Define [·]0 : P∞(A)→ K0(A) by

[p]0 := γ([p]), p ∈ P∞(A), (5.7)

where γ : S(A)→ K0(A) is the Grothendieck map. Then we have the following
alternative description of the K0-group in terms of formal differences [46]:

Proposition 5.2.8 Let A be a unital C*-algebra. Then

K0(A) = {[p]0 − [q]0 | p, q ∈ P∞(A)}
= {[p]0 − [q]0 | p, q ∈ Pn(A), n ∈ N}. (5.8)

Moreover,

1. [p⊕ q]0 = [p]0 + [q]0;

2. [0A]0 = 0;

3. if p ∼h q in Pn(A) for some n, then [p]0 = [q]0.

Proof: Each element in K0(A) has the form 〈[p], [q]〉G for some [p], [q] ∈ S(A).
Recall that [p]0 = γ([p]) = 〈[p] + [r], [r]〉G for any [r] ∈ S(A). Then we have

〈[p], [q]〉G = 〈[p] + [q], [q]〉G − 〈[q] + [p], [p]〉G = γ([p])− γ([q]) = [p]0 − [q]0.

Moreover, p ∈ Pk(A) and q ∈ Pl(A), for some k, l, so if we choose n larger than
k and l, then p ∼ p⊕0n−k =: p′ and q ∼ q⊕0n−l =: q′, and we have [p]0− [q]0 =
[p′]0 − [q′]0, and p, q ∈ Pn(A). 1.,2. and 3. are then easy computations. �

The semigroup S(A) appears in K0(A) as

K0(A)+ = {[p]0 − [0A]0 | p ∈ P∞(A)}, (5.9)
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and is called the positive cone of K0(A). It is clear that it satisfies

K0(A)+ +K0(A)+ ⊆ K0(A)+ and K0(A) = K0(A)+ −K0(A)+.

If moreover, K0(A)+∩(−K0(A)+) = {0}, then we can define an order on K0(A)
by

y ≤ x⇐⇒ x− y ∈ K0(A)+, (5.10)

leading to the ordered K0-group (K0(A),K0(A)+,≤).

Before we give some examples of the computation of K0-groups, let us state that
K0 can be extended to a functor from the category of unital C*-algebras and *-
homomorphisms to the category of abelian groups and group homomorphisms in
the following way: given unital C*-algebras A and B, and a *-homomorphism
ϕ : A → B, ϕ can be extended to a map ϕn : Mn(A) → Mn(B) defined by
ϕn(aij) := (ϕ(aij)). Since a *-homomorphism maps projections to projections,
ϕ can be extended to a map from P∞(A) to P∞(B), which will also be called
ϕ. Then we can define K0(ϕ) : K0(A)→ K0(B) by

K0(ϕ)([p]0) := [ϕ(p)]0, (5.11)

for p ∈ P∞(A), and one can show that this leads to the following commutative
diagram:

P∞(A)
ϕ //

[·]0
��

P∞(B)

[·]0
��

K0(A)
K0(ϕ)

// K0(B).

(5.12)

Proposition 5.2.9 Let A,B,C be unital C*-algebras, and let ϕ : A → B and
ψ : B → C *-homomorphisms. We have

1. K0(idA) = idK0(A);

2. K0(ψ ◦ ϕ) = K0(ψ) ◦K0(ϕ);

3. K0({0}) = {0}.

The proof consists again of easy computations, see [46]. Summarizing, we have:

Corollary 5.2.10 K0 is a functor from the category of unital C*-algebras and
*-homomorphisms to the category of abelian groups and group homomorphisms.
In particular, isomorphic C*-algebras have isomorphic K0-groups.

Note that so far, we have always assumed that our C*-algebra is unital. How-
ever, K-theory can also be defined for C*-algebras without a unit. Consider the
split exact sequence

0 //A
i //Ã

π //
C

λ
oo //0 , (5.13)
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where Ã is the unitization of A, i is the natural injection of A into Ã, π is
the natural projection from Ã onto C, and λ is defined by λ(α) := αI for all
α ∈ C. Exactness of the sequence means that Ker(i) = 0, Ker(π) = Im(i)
and Im(π) = 0. This is clearly fulfilled in this case. Moreover, the sequence is
split, because π ◦ λ = idC. Now K0(Ã) has already been defined, since Ã is a
unital C*-algebra. Then, K0(A) is defined as

K0(A) := Ker(K0(π)), (5.14)

where K0(π) : K0(Ã) → K0(C) is the map induced by π. Note however, that
not everything that is true for K0-groups of unital C*-algebras is also true for
K0-groups of non-unital C*-algebras. So non-unital C*-algebras have to be
handled with extra care.

Next, we compute the K0-group of the matrix algebras Mn(C). But first, we
need the following definition:

Definition 5.2.11 Let A be a C*-algebra. A (positive) trace on A is a bounded
linear map τ : A→ C such that, for all a, b ∈ A,

τ(ab) = τ(ba). (5.15)

Moreover, we assume positivity of τ , i.e., for all a ∈ A,

τ(a∗a) ≥ 0. (5.16)

If A is unital, then τ(IA) = 1.

It follows directly from (5.15) that τ(p) = τ(q) for Murray-von Neumann equiv-
alent projections p and q. Every trace τ on A can be extended in an obvious
way to a trace τn (usually also denoted by τ), defined by

τn


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

 :=
n∑
i=1

τ(aii).

In this way, τ can be extended to a function τ : P∞(A)→ C, and this function
has the following properties: τ(p ⊕ q) = τ(p) + τ(q) for all p, q ∈ P∞(A),
τ(0A) = 0 and τ(p) = τ(q) for equivalent projections. Thus, τ induces a map
τ∗ : K0(A)→ R, satisfying

τ∗([p]0) := K0(τ)([p]0) = τ(p), (5.17)

for all p ∈ P∞(A). Note that due to the positivity of a trace τ , τ∗ is real valued,
because of the property p = p∗ = p2 for every projection p, together with the
fact that τ(p∗p) ≥ 0. In particular, τ∗(K0(A)+) ⊆ [0,∞).

Now we can compute K0(Mn(C)):
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Example 5.2.12 We show that the K0-group of Mn(C) is isomorphic to Z
for all n ∈ N. Recall that an element in K0(Mn(C)) can always be written
as [p]0 − [q]0, where p and q are projections in Mk(Mn(C)) = Mkn(C) for
some k ∈ N. Define the trace Tr(aij) of an m-dimensional matrix (aij) by
Tr(aij) :=

∑m
i=1 aii, and observe that Tr(p) = Tr(q) if and only if the rank of

p is equal to the rank of q, i.e. dim(pCm) = dim(qCm). Moreover, equivalent
projections have equal rank and trace. Then we have

Tr∗([p]0 − [q]0) = Tr(p)− Tr(q) = dim(pCkn)− dim(qCkn),

so the induced trace Tr∗ maps K0(Mn(C)) to Z. It is easy to show that Tr∗ is
an isomorphism, so we have, for all n ∈ N,

K0(Mn(C)) ' Z. (5.18)

In particular, K0(C) = Z. Since Tr is positive, we have Tr∗(K0(C)+) = N.
Moreover, K0(C)+ ∩ (−K0(C)+) = {0}, so Tr∗ is an order preserving iso-
morphism between the ordered K0-group (K0(C),K0(C)+,≤) and the ordered
abelian group (Z,N,≤).

We can now replace C by an arbitrary C*-algebra A, and observe that P∞(A) =
P∞(Mn(A)) for all n ∈ N. In particular, using the identification between Mn(A)
and A⊗Mn(C), we have

Proposition 5.2.13 Let A be a C*-algebra. Then K0(A) is isomorphic to
K0(A⊗Mn(C)) for all n ∈ N. �

The above proposition can even be generalized to the stabilization A⊗K of a
C*-algebra A, where K := ∪∞n=1Mn(C) is the algebra of compact operators on a
separable Hilbert space (i.e. with a countable basis); recall that K(H) ' K(H′)
for all separable Hilbert spaces H and H′, so we can omit the reference to the
Hilbert space:

Proposition 5.2.14 Let A be a C*-algebra. Then A and its stabilization have
isomorphic K0-groups, i.e.

K0(A⊗K) ' K0(A).

For a proof, we refer to [46]. However, observe that A⊗K can be identified with
K(A) := ∪∞n=1Mn(A). In this way, we see that P∞(A) lies densely in P (A⊗K).

In particular, we see that K0(K) = K0(C) = Z, because the stabilization of C,
i.e., C⊗K, can be identified with K.

Definition 5.2.15 Two C*-algebras A and B are called stably isomorphic
if

A⊗K ' B ⊗K.
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Remark 5.2.16 There is a natural notion of equivalence of C*-algebras, called
Morita equivalence, which is used a lot in literature. We will not define this
here, because it can be proved, that for separable C*-algebras (even more gener-
ally for C*-algebras with countable approximate identities), two C*-algebras are
Morita equivalent if and only if they are stably isomorphic (moreover, K-theory
is an invariant for Morita equivalence for general C*-algebras).

We now state a direct consequence of Proposition 5.2.14:

Corollary 5.2.17 If C*-algebras are stably isomorphic, they have isomorphic
K0-groups. �

Remark 5.2.18 The C*-algebras C(Y/R) = C and C∗(R) = M2(C) of Exam-
ple 5.1.1 are Morita equivalent, and have the same K0-group Z. In general, for
compact Hausdorff spaces X = Y/R, C(X) is Morita equivalent with C∗(R)
[15]. So in this case, the K0-group does not distinguish between the commu-
tative C*-algebra C(X) and the noncommutative C*-algebra C∗(R). The fact
that C(X) and C∗(R) are Morita equivalent in the Hausdorff case is one of
the main motivations for the the replacement of C(X) by C∗(R) in the non-
Hausdorff case. An important example will be treated in Chapter 6. In this case,
the K0-group will be the relevant invariant to distinguish between commutative
and noncommutative topology. In fact, K0(C∗(R)) contains all interesting in-
formation about the underlying space.

In the examples we have seen so far, we see that the K0-group is countable.
This is in fact true for a large class of C*-algebras. Recall that a C*-algebra is
separable if it has a countable dense subset.

Proposition 5.2.19 Let A be a separable C*-algebra. Then K0(A) is count-
able.

Proof: Recall from Proposition 5.2.2 that if ‖p − q‖ < 1, then p and q are
equivalent. Now since A is separable, it has a countable dense subset. Com-
bining these two facts, leads to the fact that there are at most countably many
equivalence classes of projections. �

Since many C*-algebras are in fact separable - for example the C*-algebra of
compact operators on a separable Hilbert space, and the so called AF-algebras
that we define in Chapter 6 - this is a very useful proposition.

It turns out that K-theory is a powerful invariant. In Chapter 6, we will see
that for a certain class of C*-algebras, the so called AF-algebras, K-theory
provides a complete classification. Moreover, we will compute the K0-group of
the C*-algebra of Penrose tilings. K0-theory will also play an important role
in the gap labelling of Schrödinger operators on quasicrystals. To conclude this
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chapter, let’s say a few things about higher K-groups for completion. For more
information, see [46]. We stress however that we will only use the K0-group in
subsequent chapters.

We define K1(A) by
K1(A) := K0(SA),

where SA is the suspension of the C*-algebra A, defined by

SA :=
{
f ∈ C([0, 1], A) | f(0) = f(1) = 0

}
= C0((0, 1), A).

Now we can define higher K-groups by

Kn(A) := K1(Sn−1A) ' K0(SnA), (5.19)

where SnA is the suspension of Sn−1A for all n, and one can show that every
Kn is a functor, and that Kn(A) is abelian for all n. Then every short exact
sequence of C*-algebras,

0 //I
ϕ //A

ψ //B //0 ,

induces a long exact sequence of K-groups

...
Kn+1(ψ)// Kn+1(B)

δn+1 // Kn(I)
Kn(ϕ) // Kn(A)

Kn(ψ) // Kn(B)
δn // ...

... δ1 // K0(I)
K0(ϕ) // K0(A)

K0(ψ)// K0(B),

where the δn are called index maps. The main result in K-theory is then

Theorem 5.2.20 (Bott periodicity) K0(A) is isomorphic to K2(A).

In particular, the above long exact sequence reduces to the six term exact se-
quence

K0(I)
K0(ϕ) // K0(A)

K0(ψ) // K0(B)

δ0

��
K1(B)

δ1

OO

K1(A)
K1(ψ)
oo K1(I).

K1(ϕ)
oo

(5.22)

This is a short summary of C*-algebraic K-theory. In the following chapters,
we will use the K0-group of tiling C*-algebras to describe properties of the
underlying tiling.
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Chapter 6

Connes’s space of Penrose
tilings

Figure 6.1: A patch of a Penrose tiling

We will now review an important example of a non-Hausdorff quotient space
that can be described using noncommutative topology. In his book [15], Connes
uses the description of Penrose tilings given by Robinson (see, e.g. [24]), to
construct the non-Hausdorff space X of Penrose tilings. Using the substitution
properties of the Penrose tiling, one can assign an indexing sequence to a tiling,
and it can be shown that there is a bijective correspondence between X and
a quotient of the Cantor set. C(X) contains no information, i.e. C(X) = C,
and from that point of view, X can therefore not be distinguished from a single
point. However, by constructing the (noncommutative) C*-algebra C∗red(R),
which contains C(X), Connes shows that X is actually a very rich space in the
noncommutative sense. The C*-algebra of Connes is an example of the groupoid
C*-algebra of an equivalence relation, as constructed in Chapter 4. See also [37].

6.1 Penrose tilings and index sequences

Figure 6.2: Elementary tiles

Penrose tilings are normally generated by kites and darts. However, following
Robinson (see e.g. [24]), we can cut the kite and the dart along their symmetry
axis into two halves, and thus a tiling by triangles, called LA and SA respectively,

58



is obtained. The edges of the triangles have length 1 or τ , where τ = 1+
√

5
2 is

the famous golden number, cf. Section 2.4. The angles are all π/5 or 2π/5,
exhibiting a fivefold symmetry. To ensure that with these triangles we cannot
form tilings different from the ones we get using the kites and darts, we have
to impose matching conditions on LA and SA. Tiles are equipped with vertices
with or without dot, and the edges between two vertices of the same type is
oriented. For a Penrose tiling, common vertices must all be with or all be
without a dot to match, and common edges must have the same orientation.
We can form a Penrose tiling by starting with a tile SA, inflating it by a factor
τ to get LB , cutting it into a patch of LA and SA (see Figure 6.2), inflating
these again to get a patch formed by LτA′ and SτA′ , and cutting these again.
Repeating the process of cutting and inflating gives a Penrose tiling, a patch
of which is shown in Figure 6.1. From Figure 6.2, it is clear that going down
one level (i.e. going from type A to type B, from type B to type τA′, etc.),
corresponds to a substitution

L 7→ L+ S; S 7→ L, (6.1)

with corresponding substitution matrix given by

M :=
(

1 1
1 0

)
.

Note that this is precisely the same substitution as the one generating the one
dimensional Fibonacci chain. The important thing is that the process of cutting
and inflating is invertible: starting with a Penrose tiling T1 by triangles LA and
SA, we can cut every edge between the short edge of LA and a long edge of
SA. In this way, we get a tiling T2 by tiles LB and SB . Cutting again leads
to a tiling T3 by LτA′ and SτA′ . This procedure can be iterated, leading to
sequence (Tn) of tilings by triangles Ln and Sn. Now, suppose α is a triangle
in a Penrose tiling T1. Following [24, 15], we assign the value 1 to α if it is
small (i.e. isometric to SA) and 0 if it is large (i.e. isometric to LA). Then we
cut edges to obtain a tiling T2 by tiles LB and SB , and again we assign a value
1 to α if it lies in a tile isometric to SB , and 0 if it lies in a tile isometric to
LB . We can again iterate this procedure, and in this way, an index sequence
(xn) consisting of 0’s and 1’s is assigned to α. Note that since each Sn is only
contained in Ln+1 and not in Sn+1 = Ln, every 1 in a sequence is necessarily
followed by a 0. Let K denote the set of such sequences, i.e. K is the set of
sequences (xn) with values 0 or 1, obeying

xn = 1 =⇒ xn+1 = 0. (6.2)

Every element of K is the index sequence for some triangle α in some Penrose
tiling T . Observe that K is a closed subset of the Cantor set, and therefore it
is a compact Hausdorff space. In fact, we even have:

Proposition 6.1.1 There is a bijective correspondence between K and the Can-
tor ”middle third” set.
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Proof: Recall that the Cantor ”middle third” set is obtained by first removing
the middle third ( 1

3 ,
2
3 ) from the interval [0, 1], then removing the middle thirds

( 1
9 ,

2
9 ) and 7

9 ,
8
9 ), etc. An element x of the Cantor set can be described by

requiring that in its ternary expansion,

x =
c1
3

+ ...+
cn
3n

+ ...,

each cn is equal to 0 or 2. Now if we regard an element of K as a sequence in 0’s
and 10’s (in this way it automatically obeys condition (6.2)), this is precisely in
a bijective correspondence to a sequence of ternary expansion coefficients (cn)
of an element of the Cantor set, where 0 corresponds to 0 and 2 corresponds to
its binary equivalent 10. �

In this way, the topology of the Cantor set, which is just the relative topology
inherited from R, can be transferred to K. We see that two index sequences (i.e.
elements of K) are ”close” to each other if they coincide on their first entries.

Next, we return to the Penrose tiling T . It is clear that if we choose a triangle β
in T that is different from the triangle α that led to a index sequence (xn) in K,
then the index sequence assigned to β will eventually coincide with (xn), since
at some stage, α and β will lie in the same tile. Thus, it seems natural to define
an equivalence relation R (or, strictly speaking, the graph of an equivalence
relation) on K by

R :=
{

(x, y) ∈ K ×K | ∃N such that ∀n ≥ N xn = yn
}
. (6.3)

So two sequences are equivalent if they coincide eventually. Note that this is
certainly not the same as two sequences lying in the same neighbourhood, which
is the case if there is an N such that xn = yn for all n smaller than N . If we
take the quotient of K by R, we see that this corresponds to the fact that it
is irrelevant which triangle in a tiling T we choose, and in this way, we can
assign an equivalence class of an index sequence (i.e. an element of K/R) to
each Penrose tiling T . However, it is clear that if a tiling T ′ is isometric to T ,
their (equivalence class of) sequence is the same. So identical (i.e. isometric)
tilings are mapped to the same element of K/R. Conversely, every element of
K/R defines a Penrose tiling T , which is unique up to isometry. We thus have
the following:

Proposition 6.1.2 Let X be the space of Penrose tilings, where isometric tilings
are identified with each other. Then we have a bijective correspondence between
X and K/R. �

Now, recall that K is a Cantor set, and is therefore an uncountable, compact
Hausdorff space. In particular, K/R is a topological space, and this topology
can be transferred to X by the bijective correspondence between the two sets. It
is known that any two Penrose tilings are locally the same, that is, every finite
patch P of a Penrose tiling T occurs in every other Penrose tiling, and moreover,
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it occurs infinitely many times (for a proof of this fact, see [24]). Thus, a Penrose
tiling has a pattern that repeats itself over and over again, although it is not
periodic, because its fivefold symmetry is incompatible with periodicity by the
crystallographic restriction (see Proposition 2.1.5). From this, we can show that
essentially, there is only one Penrose tiling, or:

Proposition 6.1.3 The space X of Penrose tilings can not be distinguished
from a single point, i.e. the C*-algebra of continuous functions on X is equal
to C.

Proof: Note that for every z ∈ K,

{z′ ∈ K | z′ ∼ z} = K,

which means that each equivalence class for R lies densely in K. Thus, the
only closed sets in K/R are ∅ and K/R itself. Therefore, the only continuous
functions on X are the constant functions, which means that C(X) = C. It
follows that X is trivial as a topological space. �

In particular, we see that points in X cannot be separated by open sets, so X
is a non-Hausdorff space. Nevertheless, the topology of the space of Penrose
tilings is very rich, but this cannot be detected by commutative topological
instruments. However, it can in fact be detected by using noncommutative
topology. Instead of looking at C(X) = C(K/R), we look at the C*-algebra of
the groupoid R. Thus, the information is contained in the pair (K,R) and its
noncommutative C*-algebra.

6.2 The groupoid R

Of course, by Proposition 4.1.7, the equivalence relation R is a groupoid. To
give it a topology, it might seem natural to look at the relative topology of the
product topology on K ×K. However, this topology has a major disadvantage
[37]:

Proposition 6.2.1 R is not locally compact Hausdorff in the relative topology
of the product topology on K ×K.

Proof: K×K is compact Hausdorff, as a product of compact Hausdorff spaces.
Now, for x ∈ K, consider (x, x) ∈ R. Every open neighbourhood Ux ⊆ R of
(x, x) (in the relative topology) contains a set of the form{

(y, z) ∈ R | yn = zn = xn for 1 ≤ n ≤ N
}
,

for some N ∈ N, since elements x and y are close to each other if there is an N
such that xn = yn for all n ≤ N . In fact, the larger N , the closer x and y are.
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But the above set has a limit point that is not an element of R. Therefore, R is
not closed, which also means that it is not compact, by the Hausdorff property
of K ×K. It follows that the closure of Ux in the relative topology, i.e. Ux ∩R,
is not compact in this topology. Because Ux was an arbitrary neighbourhood of
(x, x) ∈ R, it follows that R is not locally compact. �

So we need a different topology on R. For n ∈ N, define R(n) by:

R(n) :=
{

(x, y) ∈ R | xi = yi ∀i ≥ n
}
.

Each R(n) is a closed subspace of K×K and is therefore compact and Hausdorff.
It is clear that R(n) ⊆ R(n+1) ∀n, and that R = ∪∞n=1R

(n). So R is an inductive
limit, and can therefore be equipped with the inductive limit topology, in which
a subset V is open in R if and only if V ∩ R(n) is open in R(n) for all n (see
Remark 4.2.8).

Proposition 6.2.2 For each R(n), the relative inductive limit topology inher-
ited from R coincides with the relative product topology inherited from K ×K.
Furthermore, each R(n) is a compact, open subset of R.

Proof: In the relative topology inherited from the inductive limit topology on
R, V ⊆ R(n) is open in R(n), if and only if there exists an open subset W of R,
such that V = R(n) ∩W . But W is open in R in the inductive limit topology if
and only if W ∩R(m) is open in R(m) ∀m ∈ N, in the relative topology inherited
from the product topology on K ×K. Thus, the two topologies coincide. Since
each R(n) is compact in the relative product topology, and by the above also in
the inductive limit topology of R, it only needs to be proved that each R(n) is an
open subset of R. But this is immediately clear in the inductive limit topology.
�

We now have the following important result:

Proposition 6.2.3 With the inductive limit topology, R is a locally compact,
R-discrete groupoid.

Proof: R is the inductive limit of the compact sets R(n). Now let (x, y) ∈ R.
By definition of R, there is an m such that xn = yn for all n ≥ m. Thus, for
this m, (x, y) ∈ R(m). Then R(m) is the open neighbourhood of (x, y) whose
closure, R(m), is compact. So R is a locally compact groupoid. Now, the unit
space R0 of R is just the diagonal in R:

R0 =
{

(x, y) | xi = yi ∀i ≥ 1
}
.

But this is exactly R(1), which is open in R. So the unit space R0 is open in R,
which by definition means that R is an R-discrete groupoid. �

Note that R is not Hausdorff (by Proposition 4.1.12, the unit space R(0) has to
be closed for R to be Hausdorff, which is not the case). However, the compact,
open subsets R(n) of R, which cover R, are all Hausdorff.
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6.3 The groupoid C*-algebra of R

As in Section 4.2, there are two possibilities to make a C*-algebra out of R,
C∗(R) and the ”reduced” C∗red(R). The first case is treated by Paterson in [37],
the second case is treated by Connes himself in [15]. Both algebras turn out to
be AF-algebras, and this fact can be used to compute their K-theory. Since the
reduced C*-algebra has a norm that is more easily accessible, we follow Connes,
and compute only C∗red(R).

As in Section 4.2, we start with the space of continuous functions on R with com-
pact support, Cc(R). Recall that if R has a left Haar system, by R-discreteness,
it will be the counting measures system (see Proposition 4.2.5). With this mea-
sure system, we can equip Cc(R) with a convolution product ∗. Compared with
(4.2), the integral is replaced by a sum. Recalling that for (x, y), (y, z) ∈ R, the
product is defined by (x, y)(y, z) = (x, z), and the inverse by (x, y)−1 = (y, x),
we get:

(f ∗ g)(x, x′′) =
∑
x′∼x′′

f(x, x′)g(x′, x′′) (6.4)

This equation should remind one of matrix multiplication: if x, x′ and x′′ were
integers i, j and k, the equation would read

(fg)ik =
∑
j

fijgjk

However, we have to keep in mind that the variables x are in fact elements of
K, that is, sequences in 0’s and 1’s. Nevertheless, it is clear that, since K is
a countable set, we can see (6.4) as a matrix product of infinite dimensional
matrices. The involution on Cc(R) is just the same as in (4.3):

f∗(x, x′) := f(x′, x) (6.5)

This should remind one of hermitian conjugation of a matrix, (A†)ij = Aji.

It is clear that this product and involution give Cc(R) a noncommutative alge-
braic structure, just as the matrix algebras Mn(C) are noncommutative.

Equipping Cc(R) with a norm ‖.‖ (respectively ‖.‖red), we get the C*-algebra
C∗(R) (respectively C∗red(R)). In the reduced case, we have the analogue of
(4.8). Recalling the fact that R(x, y) = (x, x) and D(x, y) = (y, y), we can label
an element (y, y) ∈ R0 by y ∈ K. Since (z, w) ∈ suppλD(x,y) if and only if
w = y, we get:

(πy(f)ψ)(x, y) =
∑

z∼x∼y
f(x, z)ψ(z, y). (6.6)

Since ψ ∈ `2(D−1(y)), the argument of ψ will always be of the form (x, y) for
some x ∈ K. Therefore we can drop the y, and just write x instead of (x, y).
Then (6.6) becomes:

(πy(f)ψ)(x) =
∑

z∼x∼y
f(x, z)ψ(z). (6.7)
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This should remind one of the action of a matrix on a vector-space:

(Ae)i =
∑
j

Aijej .

Again, (6.7) defines a norm on Cc(G):

‖f‖red := sup
y∈K
‖πy(f)‖op, (6.8)

where ‖πy(f)‖op denotes the operator norm (3.6) of B(`2(D−1(y))). The result-
ing algebra C∗red(R) is a C*-algebra by Proposition 4.2.11. Note that it is in
fact a unital C*-algebra, with unit I given by

I(x, x′) := δx,x′ .

Next, we will show that this C*-algebra is an AF-algebra, in the following sense:

Definition 6.3.1 An approximately finite algebra (or AF-algebra) A is
a C*-algebra that contains an increasing sequence {An} of finite-dimensional
C*-algebras such that ∪∞i=1Ai is dense in A.

In other words, an AF-algebra is the inductive limit of finite dimensional C*-
algebras. Note that if A is the inductive limit of a sequence

A1
ϕ1 // A2

ϕ2 // A3
ϕ3 // ...

and µn : An → A are *-homomorphisms, then by definition the diagram

An
ϕn //

µn
  AAAAAAAA An+1

µn+1
||zzzzzzzz

A

commutes for every n. It follows that A = ∪∞n=1µn(An). For the case of AF-
algebras, where every ϕn and every µn is an inclusion, so that every An can be
identified with a subalgebra of A, it follows that A = ∪∞n=1An. One can actually
show that every finite dimensional C*-algebra An is isomorphic to Mk1(C) ⊕
...⊕Mkn(C), where k1, ..., kn are integers [46]. Note that every AF-algebra is a
separable C*-algebra. In particular, by Proposition 5.2.19, the K0-group of an
AF-algebra is countable.

Example 6.3.2 The easiest example of an AF-algebra is of course the C*-
algebra of compact operators on a separable Hilbert space, K = ∪∞n=1Mn(C).
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We will now show that our C*-algebra associated to the equivalence relation on
the space of Penrose tilings is indeed an AF-algebra. Consider the finite sets
Km, consisting of finite sequences x ≡ (xn)n=1,2,...,m, of 0’s and 1’s obeying the
rule (6.2). There is a natural projection Km+1 → Km, that simply ”forgets” the
final xm+1. By construction, our Cantor set K is the projective limit lim←− Km

of the sequence of finite sets Km. On each Km, we have an equivalence relation
Rm defined by

Rm := {(x, x′) ∈ Km ×Km | xm = x′m}.

These equivalence relations are all finite groupoids. We can define the C*-
algebras Am := C∗red(Rm) in the same way as above. In particular, elements
f ∈ Am can be seen as finite matrices (fx,x′). If the number of sequences in Km

with xm = 0 is denoted by km, and the number of sequences with xm = 1 is
denoted by lm, we see that Am is isomorphic to Mkm(C)⊕Mlm(C), and in what
follows, we will identify these algebras with each other. Note that by (6.2), we
have

km+1 = km + lm; lm+1 = km. (6.9)

In this way, there are inclusions im : Am ↪→ Am+1, defined by

im(a⊕ b) := (a⊕ b)⊕ a, (6.10)

where a is a km×km matrix and b is a lm× lm matrix. Observe that (a⊕ b)⊕a
is indeed an element of Mkm+1(C) ⊕Mlm+1(C) because of the equalities (6.9).
It is now easy to see that C∗red(R) is equal to the inductive limit lim−→ Am of the
finite-dimensional C*-algebras Am. Thus, we have:

Proposition 6.3.3 C∗red(R) is a unital AF-algebra. �

Remark 6.3.4 Note that since the substitution rule (6.1) is the same as in the
case of Fibonacci chains, these will yield the same groupoid and thus the same
C*-algebra. This is also apparent in (6.9): we can combine the two equalities
in (6.9) to get precisely the Fibonacci recursion formula,

fn+1 = fn + fn−1.

6.4 The scaled ordered K0-group

Next, we will compute the scaled ordered K0-group of C∗red(R) [16]. We will do
this using the K-theory of the finite dimensional C*-algebras that approximate
C∗red(R). Since K0(Mn(C)) = Z for all n ∈ N, and since the K0-group of a
direct sum is the direct sum of K0-groups, it follows that, for all m ∈ N,

K0(Am) = K0(Mkm(C)⊕Mlm(C)) = Z⊕ Z = Z
2.
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Next, we use the fact that the K0-group of an inductive limit is isomorphic to
the inductive limit of K0-groups [46], i.e.

K0(lim−→ Am) ' lim−→ K0(Am).

In fact, if all the finite C*-algebras Am have an ordered K0-group, the above
isomorphism is order preserving. The ordered K0-group of an AF-algebra is
called a dimension group. From the above, it is clear that the dimension group
of an AF-algebra A = ∪∞m=1Am is equal to the inductive limit of a sequence of
ordered abelian groups

Z
n1 → Z

n2 → ...

for some positive integers ni, and with the usual order on each Zn defined by

(Zn)+ =
{

(x1, x2, ..., xn) ∈ Zn | xj ≥ 0 for all j
}
.

To compute the dimension group of our C*-algebra C∗red(R), we use the inclu-
sions im : Am → Am+1 defined by (6.10). The corresponding induced maps
K0(im) : Z2 → Z

2 are then given by

K0(im)
(
n
k

)
=
(
n+ k
n

)
,

or, equivalently, by the matrix M =
(

1 1
1 0

)
. Note that this is the same matrix

as the one that describes the substitution

L 7→ L+ S; S 7→ L.

For the finite-dimensional C*-algebras Am, it is clear that the scaled ordered
K0-groups are given by

K0(Am) =
(
Z

2, (Z+)2,

(
km
lm

))
. (6.11)

The maps K0(im) are clearly all bijections of Z2 onto Z2, since the matrix M
is invertible in M2(Z). It follows that K0(C∗red(R)) = lim−→ K0(Am) = Z

2, by
checking that the diagram

K0(Am) = Z
2 Mn−m

//

M−m ''PPPPPPPPPPPP
K0(An) = Z

2

M−nwwnnnnnnnnnnnn

K0(A) = Z
2

(6.12)

is commutative for all m ≤ n. In the same way, we see that the order unit u of
K0(A) is

u = M−m
(
km
lm

)
=
(

1
0

)
.
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One would expect that K0(C∗red(R))+ = Z
+ ⊕ Z+ = (Z+)2. However, the

matrix M is not invertible in M2(Z+), and thus, the map K0(im) is not a
bijection from (Z+)2 onto (Z+)2. By requiring the commutativity of a diagram
similar to (6.12), we see that the positive cone is given by

K0(C∗red(R))+ = ∪∞m=1M
−m(Z+)2. (6.13)

Using induction, we can show that

M−m =
(

1 1
1 0

)−m
=
(

(−1)mfm−1 (−1)m−1fm
(−1)m−1fm (−1)mfm+1

)
,

where fm are the Fibonacci numbers given by

fm+1 = fm + fm−1; f0 = 0; f1 = 1.

The image of (Z+)2 under M−m is the positive cone generated by the vectors

αm :=
(

(−1)mfm−1

(−1)m−1fm

)
and βm :=

(
(−1)m−1fm
(−1)mfm+1

)
.

Now one can show that

lim
m→∞

f2m+1

f2m
= τ+ and lim

m→∞

f2m

f2m−1
= τ− = − 1

τ+
,

where τ± := 1±
√

5
2 are the two eigenvalues of the matrix M . In the end, we find

that

K0(C∗red(R))+ = lim−→ K0(Am)+ =
{(

k
l

)
∈ Z2 | k + τ l ≥ 0

}
,

where τ = τ+ = 1+
√

5
2 .

Proposition 6.4.1 The scaled ordered K0-group of C∗red(R) is isomorphic to(
Z+ τZ, (Z+ τZ) ∩ R+, 1

)
.

Proof: Define the map ψ : K0(C∗red(R))→ R by

ψ

(
k
l

)
:= k + τ l.

It is clear that ψ is a bijection between Z2 and Z + τ−1
Z. Furthermore, ψ is

positive (i.e. ψ(K0(C∗red(R))+) ⊆ R+) and order unit preserving (ψ
(

1
0

)
= 1),

which proves the proposition. �

The map ψ can actually be seen as a state on K0(C∗red(R)), i.e., a normalized
positive homomorphism from K0(C∗red(R)) to R. Now we can use the following
basic fact for unital AF-algebras [18]:
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Proposition 6.4.2 If A is a unital AF-algebra, and ψ is a state on K0(A),
then there exists a unique trace τ on A such that ψ = τ∗.

Proof: [18] We’ll first prove this for arbitrary finite dimensional algebras An =
⊕ni=1Mki(C), where {ki} are integers. We have K0(An) = Z

n, and a homomor-
phism ψ : Zn → R is given by ψ(ki) :=

∑n
i=1 λiki, where (λi)ni=1 is a real-valued

sequence. For ψ to be positive on K0(An)+ = (Z+)n, we must have λi ≥ 0.
Define τ on An by

τ(⊕ni=1mi) :=
n∑
i=1

λiTr(mi),

where mi ∈Mki(C), and Tr is the usual matrix trace. Then τ is a trace on An,
and if pi is a projection in Mki(C), we get ψ([pi]) = λi = τ∗([pi]). It follows
that τ∗ = ψ, and τ is uniquely determined by this condition.

Now suppose A is a unital AF-algebra, i.e., A = ∪∞n=1µn(An) for some increasing
sequence of finite dimensional C*-algebras {An}, where µn denotes the inclusion
of An into A, and let ϕn denote the inclusion of An into An+1; cf. Definition
6.3.1. Then the commuting diagram of algebras yields a commuting diagram of
K0-groups:

K0(An)
ϕn∗ //

µn∗ %%JJJJJJJJJ
K0(An+1)

µn+1∗yyrrrrrrrrrr

K0(A)

Here, ϕn∗ = K0(ϕn) and likewise for µn∗. Now let ψ be a state on K0(A). Then
ψn := ψ ◦ µn∗ is a state on K0(An), so by the finite dimensional case, treated
above, there exists a unique trace τn on An such that τn∗ = ψ ◦ µn∗. Since the
above diagram commutes, we get:

τn∗ = ψ ◦ µn∗ = ψµn+1∗ϕn∗ = τn+1∗ ◦ ϕn∗.

It follows that τn∗ = (τn+1ϕn)∗, so by uniqueness in the finite dimensional case,
we get τn = τn+1 ◦ϕn. Since ψ is normalized, we τn(I) = 1, and the direct limit
of the sequence τn is a normalized trace τ on A. Then if pn is a projection in
An, we get

τ∗ ◦ µn∗([pn]) = τn(pn) = τn∗([pn]) = ψ ◦ µn∗([pn]),

Since this holds for every n, we have τ∗ = ψ, and uniqueness follows from the
finite dimensional case. �

Corollary 6.4.3 The isomorphism ψ : K0(C∗red(R)) → Z + τZ comes from a
unique normalized trace τ on C∗red(R). �
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Note that although both the trace and the golden number are denoted by τ ,
the meaning will be clear from the context. Now the trace τ defines a measure
µ on K by

τ(f) =
∫
K

f(x, x)dµ(x). (6.14)

Positivity of this measure follows from the following: observe that each positive
f ∈ C∗red(R) can be written as f = g∗ ∗ g for some g ∈ C∗red(R). We have to
show that such f is pointwise positive on the diagonal K ×K in R, such that
it defines a positive element f̃ of C(K). This follows from

f(x, x) =
∑
z∼x

g∗(x, z)g(z, x) =
∑
z∼x
|g(z, x)|2 ≥ 0,

so the positivity of τ on C∗red(R) indeed implies the positivity of the measure µ on
K. Moreover, µ is a probability measure on K, i.e., µ(K) = 1, by normalization
of τ . Observe that µ is uniquely determined by the condition τ(f ∗g) = τ(g∗f).
In Section 9.1, the situation is the other way round, i.e. we have a unique
measure on a space ΩT of tilings, which defines a trace on C∗(RT ), where RT
is an equivalence relation on ΩT .

Actually, the trace on C∗red(R) can be seen as a continuous dimension in the
sense of Murray and von Neumann [15], and in this sense, the numbers in Z+τZ
can be interpreted as measures for the density of tiles. In the same way, the
measure µ on the space ΩT of tilings will be a measure for the occurrence of
finite patches in the tiling T .

Remark 6.4.4 There is an important theorem by Elliott, stating that two uni-
tal AF-algebras A and B are isomorphic if and only if the dimension groups
K0(A),K0(A)+) and (K0(B),K0(B)+) are isomorphic in an order unit pre-
serving way, i.e. there is a group isomorphism φ : K0(A) → K0(B) such
that φ(K0(A)+) = K0(B)+ and φ([IA]) = [IB ], and there is a *-isomorphism
ρ : A→ B such that K0(ρ) = φ [46]. This theorem provides a complete classifi-
cation of (isomorphism classes of) AF-algebras by their scaled dimension groups
(actually, the theorem of Elliott is also true for non-unital AF-algebras, but then
there are some difficulties with the order unit). In fact, recently, it has been
shown that a much larger class of C*-algebras can be classified by K-theory, see
[47]. This shows that K-theory is indeed a very powerful invariant.

By the above remark, it is clear that the scaled ordered K0-group of C∗red(R),
which is isomorphic to Z + τZ, completely characterizes the noncommutative
topology of the space of Penrose tilings. In particular, we see that this noncom-
mutative topology, in contrast to the ordinary commutative topology, is by no
means trivial.

Remark 6.4.5 Since the Fibonacci strings are constructed using the same sub-
stitution as for the Penrose tilings, they yield the same equivalence relation and
the same C*-algebra, cf. Remark 6.3.4. Therefore, their K-theory is the same.
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Chapter 7

Electronic transport in
periodic media

The most important features of a material are its electronic transport properties:
whether it is a good conductor, such as a metal, or a semiconductor, or an
insulator. In this chapter, we will define the spectrum of Schrödinger operators
Next we will give a description of electronic motion in crystals, known as Bloch
theory, which uses explicitly the periodicity of the crystal, and of the tiling
by unit cells associated to it. Then we rephrase this theory to a more general,
noncommutative setting of arbitrary tilings. In the subsequent chapters, we will
see that in this setting, quasicrystals can be described as the noncommutative
analogue of crystals.

7.1 The spectrum of Schrödinger operators

To describe electronic transport properties of a crystal, one usually begins
with a Hamiltonian describing the motion of one electron in the crystal. This
Hamiltonian is a self-adjoint Schrödinger operator H on the Hilbert space
L2(Rd, ddx), defined by

H := −∇2 + V, (7.1)

where the domain of H is given by

D(H) := {ψ ∈ L2(Rd | ∇2ψ ∈ L2(Rd)}.

Here, ∇2ψ is meant in the weak sense, see [42]. In (7.1), V is a potential
that depends on the structure of the material. In general, it depends on the
interaction the electron has with ions and with other electrons. The potential
due to ion-electron interaction will be a superposition of Coulomb potentials,
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and this potential will be a periodic function of x ∈ Rd, with periods in the
lattice Γ of the crystal. We use the ”independent electron approximation” [2],
in which it is assumed that the electron-electron interactions have a screening
effect, such that the effective potential is flattened off in the regions between
the ions. In this way V becomes a continuous function. Note, however, that
we assume that the electron-electron interactions do not affect the periodicity
of the effective potential, so we have

V (x+ a) = V (x), for all a ∈ Γ. (7.2)

Note that if the temperature is nonzero, the ions in the crystal will vibrate
around their equilibrium position, which will affect the periodicity of the poten-
tial by a small modulation. This can be described by phonons [2]. In general,
we will ignore electron-phonon interactions. Also, we will only describe the
situation in the absence of an external magnetic field, and we will ignore spin
interactions.

Remark 7.1.1 Basically, phonons are just the harmonic approximation of the
atomic motion (”oscillation”) around their equilibrium positions. Electron-
phonon interactions would thus make things a lot more complicated. However,
the differential equation associated to phonons can be treated separately of the
electronic motion, and this is a problem of roughly the same level of difficulty
as the problem of electronic motion. Just as electronic motion can be used to
derive conductivity properties of the medium, phononic motion can be used to
derive its elastic properties. We will not discuss this subject, neither in the
periodic case nor in the aperiodic case. For investigations in this direction, see
[9].

Now let’s return to the description of electronic motion in a crystal. Note that,
due to the periodicity of V , H commutes with all translation operators T (a)
(for a ∈ Γ) on L2(Rd), defined by

T (a)ψ(x) := ψ(x+ a). (7.3)

Of course, T can be extended from Γ to Rd. So we have, for all a ∈ Γ,

HT (a) = T (a)H (7.4)

Now, if one wants to describe electronic motion in a crystal, it is useful to
compute the spectrum of H. Recall that for an n × n-matrix A, the spectrum
σ(A) is defined as the set of eigenvalues of A, i.e. the set of all λ ∈ C such that

Aψ = λψ,

for some ψ ∈ Cn. Eigenvalues of A can be computed by requiring det(A−λI) =
0, where I is the identity in Mn(C). So the spectrum consists of precisely those
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λ ∈ C for which A − λI is not invertible. This can be generalized to arbitrary
operators on a Hilbert space H. Therefore, we define the spectrum of H to be

σ(H) := {λ ∈ C | H − λI is not invertible in B(H)}. (7.5)

One can prove that since H is self-adjoint, σ(H) ⊆ R. If the spectrum of H is
a ”point” spectrum, it consists of the energy eigenvalues of H. In general, the
spectrum can consist of three different types [41, 36]:

Proposition 7.1.2 The spectrum σ(A) of an operator A can be decomposed as

σ(A) = σac(A) ∪ σsc(A) ∪ σp(A).

Here, σp(A) denotes the point spectrum (consisting of the eigenvalues of A)
and its limit points, and σac(A) and σsc(A) denote the absolutely continuous
and the singular continuous part of the spectrum, respectively. The abso-
lutely continuous spectrum is defined as the support of the spectral measure
µac that is absolutely continuous with respect to the Lebesgue measure (i.e.,∫
A
dE = 0 implies

∫
A
dN = 0), whereas the singular continuous spectrum has

zero Lebesgue measure (it is the support of the singular continuous measure
µsc, which is characterized by the fact that µsc(S) = 0 for some set S with
λ(R\S) = 0). Typically, the a point part consists of isolated points, the abso-
lutely continuous part consists of intervals or bands, and the singular part is
what remains. Note that the different types of spectrum can overlap.

Example 7.1.3 Let’s give an example of a singular continuous measure [41].
Recall that the Cantor ”middle-third” set C has zero Lebesgue measure. Define
the Cantor function α on [0, 1] ⊂ R as follows: set α(x) := 1

2 on the open
interval ( 1

3 ,
2
3 ); α(x) := 1

4 on ( 1
9 ,

2
9 ) α(x) := 3

4 on ( 7
9 ,

8
9 ), etc. Next, extend α

(uniquely) to a continuous, nondecreasing function on [0, 1]. This function is
called the Cantor function (see Figure 7.1). Note that α has the property that
its derivative α′(x) exists Lebesgue-almost everywhere (namely, on [0, 1]\C) and
is zero almost everywhere, i.e., α is almost everywhere constant. Construct the
measure µα on [0, 1] by defining it on open intervals (a, b) as

µα(a, b) := lim
ε→0

α(b− |ε|)− lim
ε→0

α(a+ |ε|).

By continuity of α, we have µα({p}) = 0 for any point {p}, so µα is not a point
measure. On the other hand, µα is not absolutely continuous with respect to
the Lebesgue measure, since µα([0, 1]\C) = 0, where λ([0, 1]\C) = 1 and vice
versa. Hence, µα must be a singular continuous measure. In particular, we see
that if the spectrum is homeomorphic with the Cantor set C, the spectrum is
purely singular continuous.
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Figure 7.1: The Cantor function

Remark 7.1.4 In spectral theory, the spectrum is often called a ”Cantor set” if
it is a closed, nowhere dense subset of R without isolated points. Note however
that this admits a nonzero Lebesgue measure, so in this case, a Cantor spectrum
doesn’t have to be purely singular continuous. To avoid confusion, we will call
these spectra ”Cantor-like”, reserving the name ”Cantor set” for sets that are
homeomorphic with the ”middle-third” set, such as the unit space K of the
groupoid R in Chapter 6.

Until the eighties, it was thought that singular continuous spectrum was un-
physical, and an important issue in spectral theory was to show that σsc is
empty for physically realistic Hamiltonians [41, 43]. We will see that for a crys-
tal, the spectrum of the Hamiltonian is purely absolutely continuous, exhibiting
a typical ”band structure”. On the other hand, the spectrum of quasiperiodic
Hamiltonians may contain a singular continuous part, which makes them an
important counterexample to what was believed until the eighties. However,
this also makes quasiperiodic Hamiltonians particularly difficult to handle.

7.2 Bloch theory

Now let’s first show how the spectrum of a periodic Hamiltonian can be com-
puted. Since it is difficult to do this directly, it is useful to decompose H into a
so called direct integral of Hamiltonians, each with discrete spectrum. The idea
is as follows: first of all, note that the translation operator T defined by (7.3)
can be seen as representation of the discrete, abelian group Γ on the Hilbert
space L2(Rd). In fact, T coincides with the right regular representation πL of Γ.
Note that T is a unitary representation, since T (x)∗ = T (−x) = T (x)−1. Fur-
thermore, observe that Γ is a locally compact, discrete subgroup of Rd. We want
to decompose T into a direct integral of irreducible representations. Recall that
every irreducible representation of an abelian group is one-dimensional (this is
the group-theoretic analogue of Proposition 3.2.5). Therefore, analogous to the
C*-algebraic case, every irreducible representation is just a character, and the
”structure space” of an abelian group G consists of the characters of G. Note
that the structure space is an abelian group itself, which is called the character
group (or dual group) Ĝ.

Example 7.2.1 We want to compute the character group Γ̂ of the lattice Γ,
seen as a as an abelian, locally compact group. Recall that a character of a
group G is a group homomorphism χ : G → C such that |χ(g)| = 1 for all
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g ∈ G. The easiest case to compute is the lattice Γ = Z. Recall that the
reciprocal lattice Γ∗ is defined as the set of all b such that, for all a ∈ Γ,

eib·a = 1.

In this case we see that the reciprocal lattice Γ∗ is equal to 2πZ. Now, the
character group of Z consists of the maps Tθ : Z→ C defined by

Tθ(n) := einθ,

and since θ can take values between 0 and 2π, it is easy to see that Ẑ is iso-
morphic to S1, which is precisely R/Γ∗. Now, if Γ is an arbitrary lattice in Rd,
the above can be easily generalized to see that Γ̂ is equal to Rd/Γ∗, which is
identified with the Brillouin zone B.

We can decompose the representation T , using the concept of direct integrals
[5, 17, 43], which are generalizations of direct sums:

Definition 7.2.2 Let (Λ, µ) be a measure space, and let {Hλ}λ∈Λ be a family
of Hilbert spaces, each with inner product 〈·, ·〉λ. The direct integral H of this
family is defined as the Hilbert space of all measurable families ψ over Λ (see
[43]) such that ψ(λ) ∈ Hλ, with inner product

〈ψ, φ〉 :=
∫

Λ

〈ψ(λ), φ(λ)〉λdµ(λ) <∞.

ψ : Λ→ {Hλ} is called a section of the field {Hλ}. We will write

H =
∫ ⊕

Λ

Hλdµ(λ).

An operator A on H is decomposable if there exists a section of operators
A(·) : λ ∈ Λ 7→ A(λ) ∈ B(Hλ) such that

(Aψ)(λ) = A(λ)ψ(λ),

for all ψ ∈ H, λ ∈ Λ. We will write

A =
∫ ⊕

Λ

A(λ)dµ(λ).

One can show that the space H is indeed a Hilbert space. Note that if Λ is a
finite or countable set and µ is the counting measure, then the direct integral
reduces to the familiar direct sum of Hilbert spaces.

Theorem 7.2.3 Let Γ be a lattice in Rd, seen as a discrete abelian subgroup of
R
d. Let T be the representation of Γ on L2(Rd) defined by (7.3). Then T can

be decomposed such that, for every a ∈ Γ,

T (a) =
∫ ⊕

Γ̂

χ(a)dµ(χ), (7.6)
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where every χ is a character of G, and L2(Rd) decomposes as

L2(Rd) =
∫ ⊕

Γ̂

Hχdµ(χ).

This theorem is a special case of a theorem concerning representations of abelian
locally compact groups, called the SNAG Theorem (Stone, Naimark, Ambrose,
Godement). For a proof, see [5]. By the above Example 7.2.1, the decomposition
may alternatively be written as

T (a) =
∫ ⊕
B
eik·addk, (7.7)

and the Hilbert space L2(Rd) on which each T (a) acts is decomposed into the
direct integral

L2(Rd) '
∫ ⊕
B
Hkddk. (7.8)

Elements ψ ∈ L2(Rd) can thus be seen as sections ψ : B → {Hk} such that
ψk ∈ Hk. By (7.7), we have for every ψk ∈ Hk:

ψk(x+ a) = T (a)ψk(x) = eik·aψk(x), (7.9)

for all x ∈ Rd, a ∈ Γ. A norm on each Hk is given by

‖ψk‖2 =
∫
V
|ψk(x)|2ddx <∞, (7.10)

where V = R
d/Γ is the Voronoi unit cell. Note that Hk is not a subspace of

L2(Rd), since the L2-norm of an element ψk ∈ Hk is in general infinite.

Now we can decompose the Hamiltonian H using the decomposition (7.8) and
the fact that H commutes with all T (a)’s. This yields

H =
∫ ⊕
B
Hkd

dk, (7.11)

where, for fixed k, each wave function ψk in the domain D(Hk) of Hk is an
element in Hk that obeys (7.9) and (7.10), and for which ∂2ψk/∂x

2
i ∈ Hk for

i = 1, 2, ..., d, where again the derivative is meant in the weak sense [42].

Each Hk acts on ψk ∈ Hk by

Hkψk(x) = −∇2ψk(x) + (Vkψk)(x), (7.12)

where Vk is the operator on Hk defined by

(Vkψ)(x) := V (x)ψ(x).
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Note that Vk is independent of k, that is, each Vk acts in the same way on its
own Hilbert space Hk.

We have now reduced the problem of finding the spectrum of H acting on
L2(Rd) to the case of Hk acting on Hk, which is simpler, because we can use
the ”boundary conditions” (7.9) for each ψk. For fixed k ∈ B, we can solve the
equation

Hkψk(x) = E(k)ψk(x),

and one can show [43] that this leads to a discrete spectrum {En(k) | n ∈ N} that
is bounded from below, with corresponding eigenfunctions ψk,n. Next, letting
k run through all the values in B, we find the spectrum of the Hamiltonian H,
i.e.

σ(H) = ∪k∈Bσ(Hk).

The above is a mathematically precise description of Bloch theory. In particular,
we have the following famous theorem (see, for example, [2]):

Theorem 7.2.4 (Bloch’s theorem) The ”improper” eigenstates ψ of the one-
electron Hamiltonian H := −∇2 + V , where V (x + a) = V (x) for all a ∈ Γ,
obey

ψn,k(x+ a) = eik·aψn,k(x). (7.13)

Note that an eigenstate ψn,k of Hk is not an eigenstate of H, since Hk is not
a proper subspace of L2(Rd). This is the reason that we call ψn,k improper
eigenstates of H. Another, equivalent way of formulating Bloch’s theorem is
that every improper eigenstate ψ of H is of the form

ψn,k(x) = eik·xun,k(x), (7.14)

where un,k obeys
un,k(x+ a) = un,k(x), (7.15)

for all a ∈ Γ. We see that the improper eigenfunctions of H are plane waves
modified by a Γ-periodic function, so they are extended wave functions.

Remark 7.2.5 Observe that T represents Γ onto L2(Rd), and in this way the
family of operators {T (a) | a ∈ Γ} generates a sub-C*-algebra C∗(T (Γ)) of the
C*-algebra B(L2(Rd)), defined by

C∗(T (Γ)) :=

{∑
a∈Γ

f(a)T (a) | f ∈ `1(Γ)

}
.

By commutativity of Γ, this C*-algebra is commutative, so it is equal to the C*-
algebra of continuous functions on its character space by Theorem 3.1.2. Since
T (a) acts as multiplication by eik·a on each fiber Hk, where k ∈ B, it is clear
that the C*-algebra C∗(T (Γ)) is nothing but the algebra C(Γ̂) = C(B) acting
by multiplication on L2(Rd). See [38] for more information. We also refer to
Remark 7.4.2. We will show that the stabilized version of C(B) can actually be
seen as the C*-algebra generated by the Hamiltonian, see Section 7.4 below.
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7.3 Band spectrum, the IDS and conductivity

One can show [43] that the spectrum of the periodic Hamiltonian H is absolutely
continuous with respect to k, whereas for fixed k, it is discrete. Observe that,
for fixed n, En(k) assumes a minimum En,min and a maximum En,max on B,
because En is a continuous function of k and B is compact. If we index the wave
functions ψn,k in such a way that E0,min ≤ E1,min ≤ ..., then one sees that the
spectrum just consists of intervals En(B) = [En,min, En,max] in R, labeled by
the index n:

σ(H) = ∪∞n=0En(B).

These intervals are the bands in the familiar band spectrum of periodic Hamil-
tonians. Note however, that the bands may overlap, i.e., the gaps between the
bands can close. We will now show how the analysis of the spectrum can be
used to deduce conductivity properties of the crystal.

Recall that in atomic physics the spectrum of a Hamiltonian is discrete and
bounded from below. In the atomic model, the ground state is the eigenstate
ψ0 of the Hamiltonian with the lowest energy eigenvalue E0. Subsequently,
we have excited eigenstates ψ1, ψ2, ... corresponding to energies E1 ≤ E2 ≤ ...,
which are possibly degenerate. Recall that according to the Pauli principle,
it is not possible that two electrons are in the same state. If we ignore spin
(which would give an extra factor 2), this means that every energy eigenstate
is only occupied by one electron. Thus, the electrons have to be distributed
over the possible eigenstates, beginning with the lowest energy. However, in the
case of a crystal, the problem is that the spectrum is absolutely continuous. In
particular, the Hamiltonian has no proper eigenstates, and the electrons have
to be distributed over a continuum of energies. We can overcome this problem
by restricting the Hamiltonian to a unit cell V, subject to periodic boundary
conditions. Then the restriction HV has a discrete spectrum that is bounded
from below. In particular, for each energy E, one can compute the number
NV(E) of eigenvalues of HV smaller than or equal to E, i.e.

NV(E) := ]{E′ ∈ σ(HV) | E′ ≤ E},

where ]X denotes the number of elements of a countable set X. Again, ignoring
spin (which would give an unimportant extra factor 2), this is equal to the
number of eigenstates of HV with eigenvalue less than or equal to E. Next,
define V(m) to be the set of volume md|V| obtained by stacking up m×m×. . .×m
unit cells. Now we can define the integrated density of states (IDS) N(E)
by

N(E) := lim
m→∞

1
md|V|

NV(m)(E). (7.16)

The IDS can be seen as the number of states per unit volume with energy up to
an energy E. One can show that the limit exists [36], so the IDS is well defined.
It is clear that it is a nonnegative, nondecreasing function on R. It defines a so
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called Stieltjes-Lebesgue measure dN on R by

dN(E′, E] := N(E)−N(E′),

which is a generalization of the Lebesgue measure dλ(E′, E] := E − E′. Note
that dN is absolutely continuous with respect to the Lebesgue measure dE (i.e.,∫
A
dE = 0 implies

∫
A
dN = 0) [41]. Therefore, by the Radon-Nikodym theorem,

we can define the density of states to be the derivative dN
dE of the IDS [43].

This density of states is a well known quantity in solid state physics, which is
in fact accessible by scattering experiments [7].

For the band spectrum of H, it is clear that the IDS is constant on the gaps
between the bands. Thus, a gap g can be labeled by the value N(E) for E ∈ g,
where the choice of E in g is not relevant. This gap labelling is very robust
under perturbations of the Hamiltonian. Mathematically, the arbitrariness of
the choice of E ∈ g is not very satisfactory. Therefore, we will try to find
invariants that can be mapped to the set of gap labels in a canonical way. In
Chapter 9, we will see that actually, the K0-group of a certain C*-algebra, called
the C*-algebra of observables, can serve as the set of invariants we are looking
for.

To deduce conductivity properties of the crystal from the spectrum of the Hamil-
tonian, suppose that the number of electrons per unit volume is l. In the ground
state, we fill up the lowest l energy levels of HV . Then we define the Fermi
energy EF is the lowest energy for which the IDS is precisely l, i.e.

EF := inf{E ∈ R | N(E) = l}.

The space of all k ∈ B such that

En(k) = EF ,

for some band index n is called the Fermi surface. Note that if EF lies in a
gap, the Fermi surface is empty.

To set up a current in a crystal, electrons have to be excited from the ground
state to a state with higher energy, i.e., a state with energy above the Fermi
level EF . Now if EF lies in a band En(B) for some n, electrons can be excited
by an arbitrary small amount of energy, so not much effort (energy) is needed
to set up a current. In this case, the crystal is a good conductor. However,
if EF lies in a gap g, there is a forbidden region (EF , EF + ε) ⊆ g, for which
no states are possible. In particular, a finite amount of energy is needed to
excite an electron above the Fermi level, because the gap has to be crossed. So
in this case, a certain amount of energy is needed to set up a current, which
typically means that the crystal is not a good conductor. If the band gap is
large compared to kBT , where T is the temperature and kB is Boltzmann’s
constant, the crystal is an insulator. If the band gap is of the order of kBT ,
the crystal is a semiconductor [2]. We see that basically, the difference between
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Figure 7.2: Energy bands in conductors and insulators

insulator and conductor lies in the fact whether the Fermi energy lies in a gap
of the spectrum or not (see Figure 7.2).

From the above, it is clear that the conductivity properties of a crystal can
largely be deduced from the band spectrum of the one-electron Hamiltonian. In
particular, the (integrated) density of states is an important tool. Therefore, we
want to analyze the spectrum of quasiperiodic Hamiltonians in order to obtain
electronic properties of quasicrystals. It is clear that in the aperiodic case we
cannot use Bloch theory to obtain the spectrum, because of its crucial depen-
dence on the periodicity of the crystal. Therefore, we have to find a different
method. Numerical computations using Bloch theory in periodic approximants
of quasicrystals show that the density of states, which is the derivative of the
IDS, consists of locally dense sets of sharp spikes (see Figure 7.3), indicating
that it consists of δ-functions in the idealized situation without perturbations
(see the contribution of Fujiwara in [54]). Therefore, it is believed that in con-
trast to crystals, quasicrystals have a singular continuous spectrum, or at least a
large singular continuous part. As mentioned before, in this sense the spectrum
of the Schrödinger operator describing electronic motion in quasicrystals is an
important example that singular continuous spectrum can in fact be physical,
in contrast to what people believed until the eighties [41, 43].

Figure 7.3: IDS (non-decreasing function) and DOS (”spiky function”) of a
one-dimensional quasicrystal (arbitrary scale)

The spectrum appears to be generically Cantor-like, in the sense that it is
a closed nowhere dense subset of R without isolated points, cf. Remark 7.1.4.
Note that this does not imply that it is singularly continuous, cf. Section 9.3.
Observe that if the spectrum is equal to the Cantor ”middle third” set, its IDS
is exactly given by the Cantor function of Figure 7.1.

By observing that amorphous materials have pure point spectrum and expo-
nentially localized wave functions, whereas crystals have absolutely continuous
spectrum and extended wave functions, it seems natural to hope that quasicrys-
tals lie in between, with (partly) singular continuous spectrum and critical (i.e.
neither extended nor exponentially localized) wave functions. Note that these
spectral properties can also account for the observed low conductance of qua-
sicrystals.

In the following, we will develop an operator-algebraic approach to analyze the
spectrum of Schrödinger operators, which can be generalized to the aperiodic
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case.

7.4 The C*-algebra of observables

In this section, we mainly use results from [8]. Recall from Definition 3.2.10
that for a unital C*-algebra A, the spectrum of an element a ∈ A is defined as

σ(a) := {λ ∈ C | λI− a is not invertible in A}. (7.17)

Of course, if H is a bounded operator on L2(Rd), i.e. H ∈ B(L2(Rd)), this is a
generalization of (7.5). Note however, that the Hamiltonian H is in general not
a bounded operator, so any *-algebra that contains H cannot be a C*-algebra.
However, we can still form a C*-algebra using the resolvent of H in the following
way. Recall that the resolvent ρ(H) is the complement of σ(H). Alternatively,
ρ(H) can be defined by

ρ(H) = {λ ∈ C | (λI−H)−1 ∈ B(L2(Rd))}.

Now for all λ ∈ ρ(H), we can define the operator R(λ) on L2(Rd) by

R(λ) := (λI−H)−1.

This operator is called the resolvent operator (also called a Green’s function).
For a periodic Hamiltonian H, we can decompose R(λ) using the direct integral
decomposition of H over the Brillouin zone B: observe that since σ(Hk) ⊂ σ(H)
for all k ∈ B, we get the converse inclusion for the resolvents, i.e. ρ(H) ⊂ ρ(Hk)
for all k ∈ B. Therefore, we have for fixed λ ∈ ρ(H):

R(λ) =
∫ ⊕
B
Rk(λ)ddk,

where Rk(λ) is defined as

Rk(λ) = (λI−Hk)−1.

Recall that Hk has discrete spectrum. Now one can show [43] that for an
operator with discrete spectrum, the resolvent operators are compact operators.
So every Rk(λ) is a compact operator. In particular, it is a bounded operator
for all k ∈ B. These bounded operators can be seen as elements of a C*-algebra,
called the C*-algebra of observables [8]. Note that normally, the algebra
of observables is generated by the momentum and position operators. It is in
general the real part of a C*-algebra, since observables have a real spectrum.
However, in general we will look at the full C*-algebra, and not just at its
real part. In Section 8.4, we will actually identify the momentum and position
operators in a discrete version of the C*-algebra of observables in aperiodic
media.
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To actually construct the C*-algebra of observables, note that, since the crystal
is a homogeneous medium, there is no natural choice of an origin in an infinitely
large crystal. In particular, for every x ∈ Rd, T (x)HT (x)−1 describes the
same physics as H. This means that the C*-algebra of observables should not
only contain the resolvent operator, but also all its translates. Therefore, we
simply define the C*-algebra of observables to be the C*-algebra generated by
the resolvent operator and all its translates. In particular, viewing R(λ) as a
function on B, i.e.

R(λ) : k ∈ B 7→ Rk(λ) ∈ K(Hk),

we see that the C*-algebra must be generated by the family {T (x)R(λ)T (x)−1 |
x ∈ Rd}. Actually, by the simple equality

R(λ) = (I+ (λ− λ′)R(λ′))−1R(λ′),

which holds for all λ, λ′ ∈ ρ(H), we see that the C*-algebra that is generated
by the above family of operators is independent of λ ∈ ρ(H).

We will now show that this C*-algebra of observables is actually isomorphic to
C(B)⊗K, the stabilized version of the algebra of the Brillouin zone. First, we
decompose the representation T of Rd into representations of Γ and Rd/Γ, using
the decomposition

R
d ' (Rd/Γ)× Γ; x 7→ (x, a),

where x := x mod Γ and a ∈ Γ is such that a = x−x. Recall from Remark 7.2.5
that the T (a)’s form the C*-algebra C(B), acting by multiplication on L2(Rd).
We can now use an abstract Fourier transformation to transform the remaining
factor T (x)R(λ)T (x)−1. Recall that Fourier transformation of a function in
L2(G), where G is a (locally compact) abelian group, yields an element in
L2(Ĝ), where Ĝ is the character group of G. Now we can use the fact that
for our lattice Γ, we have Γ̂ = R

d/Γ∗ = B and Γ̂∗ = R
d/Γ = V, and vice versa.

The Fourier transform of a function f on V is then the function f̃ on Γ∗ defined
by

f̃(b) =
1
|V|

∫
V
f(x)e−ib·xddx. (7.18)

In this way, for x ∈ Rd/Γ, the operator T (x)Rk(λ)T (x)−1 is transformed to
T (b)R̃k(λ)T (b)−1, where b ∈ Γ∗. Here, R̃k(λ), acting on `2(Γ∗), denotes the
Fourier transform of Rk(z), acting on Hk. If we denote by {uk(b) | b ∈ Γ∗} an
orthonormal basis of the fiber `2(Γ∗) (where k is fixed), the compact operator
R̃k(λ) has matrix elements

(R̃k(λ))bb′ := 〈uk(b), R̃k(λ)uk(b′)〉,

labeled by b, b′ ∈ Γ∗. The map R̃(λ), defined by

R̃(λ) : k ∈ B 7→ R̃k(λ) ∈ K(`2(Γ∗)),

is norm continuous. Therefore, we see that every element of the C*-algebra
generated by {T (x)R(λ)T (x)−1 | x ∈ Rd} defines an element of C(B,K). Note
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that we use the fact that K(`2(Γ∗)), the C*-algebra of compact operators on
`2(Γ∗), can be replaced by K := ∪∞n=1Mn(C), because the C*-algebra of compact
operators on a separable Hilbert space is always isomorphic to K. We now have
[8, 6]:

Theorem 7.4.1 Let H = −∇2 + V be a Schrödinger operator, where V is a
potential chosen in such a way that:

1. V has the periodicity of the lattice Γ;

2. Each band function En is smooth;

3. the bands En(k) are non-degenerate in the sense that for all k ∈ B, we have
En(k) 6= Em(k) if n 6= m, and for fixed k, each En(k) is a non-degenerate
eigenvalue of Hk.

Then the C*-algebra generated by the family {T (x)R(λ)T (x)−1 | x ∈ Rd} of
translated of the resolvent of H is isomorphic to C(B)⊗K.

Actually, in [8], J. Bellissard stated the theorem without the second and third
condition, but this is in fact not true [6] (for example, if V ≡ 0, obviously the
C*-algebra generated will be commutative, so that the theorem does not hold
in this case).

Sketch of the proof: We have already shown that one may equivalently look
at the C*-algebra generated by the family

{T (b)R̃(λ)T (b)−1 | b ∈ Γ∗}.

Noting that C(B,K) is isomorphic to C(B) ⊗ K, which is in turn isomor-
phic to ∪∞n=1Mn(C(B)), we see that every continuous function of elements
T (b)R̃(λ)T (b)−1 defines an element of C(B) ⊗ K. To show that in fact ev-
ery element of C(B)⊗K can be obtained in this way, we want to indicate that
we can generate any finite rank matrix by considering continuous functions of
{T (b)R̃k(λ)T (b)−1 | b ∈ Γ∗}. Now observe that for fixed k ∈ B, Hk has discrete
spectrum ∪∞n=1En(k). Moreover, the same holds for the Fourier transform H̃k,
acting on `2(Γ∗), and if we diagonalize H̃k, we see that the bands En(k) can ac-
tually be labeled by n ∈ Γ∗. Now any continuous function of T (b)R̃k(λ)T (b)−1

can be written as a continuous bounded function of the band functions Eb(k).
Using the non-degeneracy of the Eb(k)’s, each spectral projection Pb(k) of Hk

associated to Eb(k) belongs to the C*-algebra generated by T (b)R̃k(λ)T (b)−1’s,
and in this way, all rank one matrices over C(B) can be generated. Since T (b′′)
acts as a shift operator on the matrix elements (R̃k(λ))bb′ , we can generate any
finite rank matrix over C(B). �

The C*-algebra C(B) ⊗ K is called the algebra of the Brillouin zone. Note
that this formulation is different from the one in Chapter 3, where C(B) is re-
garded as the natural C*-algebra associated to a compact space. However, the
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two C*-algebras are stably equivalent, so neither main invariant we are using,
namely K-theory, nor the structure space, will not distinguish between the two
of them. Note that in the present formulation, K is the algebra of a point, since
C({p}) ' C, and C ⊗ K ' K. The remarkable thing is that the C*-algebra of
observables does not depend on the shape of the potential, apart from its period-
icity and the other moderate conditions of the theorem: indeed, any potential V
with periodicity of the lattice, yielding smooth band functions En(k) satisfying
the non-degeneracy condition, gives the same algebra. Although C(B) ⊗ K is
noncommutative, its noncommutativity is entirely contained in the stabilizing
factor K. We will show that in the general (not necessarily periodic) case we
can form a certain groupoid C*-algebra, the ”noncommutative C*-algebra of
the hull”, which reduces to C(B) ⊗ K in the periodic case. Therefore, it can
be seen as the ”noncommutative C*-algebra of observables”, or the ”noncom-
mutative Brillouin zone”, and we will see that, just as in the periodic case, its
construction doesn’t depend on the form of the Hamiltonian, but only depends
on the shape of the material and of the tiling that serves as a model for the
material.

Remark 7.4.2 There is a different approach, due to Gruber [23], using the
concept of Hilbert C*-modules. Note that by identifying the Brillouin zone B
with the character group Γ̂ of the lattice Γ, one can establish an isomorphism
between C(B) = C(Γ̂) and C∗red(Γ), the reduced group C*-algebra of Γ, in the
following way: for f ∈ C∗red(Γ), we define its generalized Fourier transform
f̂ ∈ C(B) by

f̂(k) =
∑
a∈Γ

fae
ik·a,

cf. (7.18). Just as in the ordinary case, the Fourier transform of the convolution
product is precisely the pointwise product of the Fourier transforms, i.e.

f̂ ∗ g = f̂ ĝ,

and also, f̂∗ = f̂∗. Thus, C∗red(Γ) is mapped into C(B). Since one can prove
the existence of an inverse Fourier transform, this map is an isomorphism. Now
if Γ is no longer abelian, although it is still a discrete group (for example if a
magnetic field is applied to a crystal, in which case translations are replaced by
”magnetic translations”, which do not commute), C(Γ̂) has lost its meaning.
However, we can still define C∗red(Γ) for non-abelian groups. According to [23],
this algebra is then the noncommutative C*-algebra of the Brillouin zone.

However, for quasicrystals, this method doesn’t seem to be applicable, since we
cannot form a translation group that maps the Delone set of atomic positions
into itself, not even if we try it with a non-abelian group. This is due to the
fact that if a translation over x maps one point of a Delone set into another, it
does not necessarily map every point of the Delone set into another point of the
Delone set. This reminds us of the concept of a groupoid G, where not all pairs
in G×G were composable. So if we can find a groupoid G that reflects the local
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symmetry properties of the quasicrystal, the groupoid C*-algebra C∗red(G) will
be a good candidate for the role of noncommutative C*-algebra of observables.

The question now arises how the C*-algebra of observables can be used to com-
pute the spectrum of the Hamiltonian. Recall that for Hamiltonians describing
electronic motion in aperiodic media such as quasicrystals, it is in general impos-
sible to compute their spectrum, because without periodicity, Bloch’s theorem
no longer holds, so we cannot decompose the Hamiltonian to compute the spec-
trum. However, the interesting thing is that the K-theory of the noncommuta-
tive C*-algebra of observables can be used to obtain properties of the spectrum
of the Hamiltonian, such as the value of the integrated density of states on gaps
of the spectrum, which can serve as a labelling for these gaps. But first, let us
construct this noncommutative C*-algebra of observables, using the concept of
the hull of a tiling.

Remark 7.4.3 One may wonder why we don’t just generalize the above com-
putation of the C*-algebra of observables, generated by all translates of the
resolvent of the Hamiltonian, to the aperiodic case. We won’t do this, because
this C*-algebra is in general very difficult to compute, since we cannot use a di-
rect integral decomposition of the Hamiltonian over the Brillouin zone. Another
obvious choice for a C*-algebra would be to consider the C*-algebra B(L2(Rd))
of bounded operators on L2(Rd), but this algebra is obviously much too large
to reflect any properties of the medium we are looking at, since it is totally
independent of the material. It turns out that the noncommutative C*-algebra
of the hull is relatively easy to compute, and that it sufficiently reflects the
properties of the medium, although it is larger than the C*-algebra generated
by the Hamiltonian. Of course, we must find a criterion for a Schrödinger oper-
ator to be ”affiliated to” a C*-algebra, otherwise it would be impossible to say
anything about the spectrum of the operator by just examining the K-theory
of the C*-algebra.
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Chapter 8

The aperiodic case

In this chapter, we will define the hull of arbitrary tilings, define an equivalence
relation on it and construct its groupoid C*-algebra. We will show that this
C*-algebra reduces to C(B) ⊗ K in the periodic case of a tiling by unit cells.
Therefore, the C*-algebra of the hull may be viewed as the noncommutative
C*-algebra of observables.

We will define two hulls, the continuous one and the discrete one, and show that
their C*-algebras are stably equivalent, which means that they have the same K-
theory. This can be used to obtain properties of the spectrum of quasiperiodic
Schrödinger operators, which is the subject of the next chapters. In the last
section, we will compare the construction of the hull and its noncommutative
C*-algebra with the construction of the noncommutative space of Penrose tilings
by Connes, cf. Chapter 6.

8.1 The hull

Let T0 be a d-dimensional tiling, which models a not necessarily periodic medium.
If a self-adjoint operator H describes the motion of an electron in this tiling,
this motion can also be described by an electron that is at rest in the origin of
R
d, while the tiling is moving. In other words, we consider the frame of refer-

ence where the electron is at rest. Thus, instead of considering one tiling T0

and a moving electron in it, we consider the collection {T0 + x | x ∈ Rd} of all
translates of the tiling. The Hamiltonian H will then be replaced by a family
of selfadjoint operators {HT }, satisfying the covariance condition

T (x)HTT (x)−1 = HT+x, (8.1)

where we set HT0 := H. The idea is now to look at the set of translates of the
tiling, and define a topology on it.
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For an arbitrary tiling T of Rd, consider the set of tilings

T + Rd := {T + x | x ∈ Rd}.

Following [31], we define a metric d on T + Rd as

d(T1, T2) := min{1, d̃(T1, T2)},

where

d̃(T1, T2) := inf
{
ε | ∃x1, x2 ∈ B(0, ε) s.t. (T1 + x1) �B(0, 1ε )= (T2 + x2) �B(0, 1ε )

}
.

In other words, we define d in the following way: for 0 < ε < 1, we say that
the distance d(T1, T2) between two tilings in T + Rd is less than ε if there are
x1, x2 ∈ B(0, ε) such that the tilings T1 + x1 and T2 + x2 coincide on B(0, 1

ε ).
If there are no such x1, x2 for any ε < 1, then we set d(T1, T2) = 1. It is easy to
show that d is indeed a metric. Now we have the following definition:

Definition 8.1.1 Given a tiling T , the hull ΩT of T is defined as the comple-
tion of the metric space (T + Rd, d).

Proposition 8.1.2 In the case that T is a periodic tiling by unit cells V, with
lattice Γ, the hull ΩT is homeomorphic to the unit cell V.

Proof: Note that when T is periodic, with lattice Γ, one has T + a = T for
all a ∈ Γ, so it is clear that by the above, as a set, T + Rd is just V = R

d/Γ,
described in a difficult way. If we can prove that in the periodic case the metric
d is equivalent to the Euclidean metric on Rd/Γ, we have proved the proposition.
Now, suppose that T1, T2 are two elements of (T + Rd, d). Then it follows that
T1 = T2 + x for some x ∈ Rd, and by periodicity there is an x′ ∈ Rd/Γ and
a γ ∈ Γ such that x = x′ + γ. If we assume that the unit cell Rd/Γ = V
is contained in a ball of radius 1 (otherwise, we can scale the unit cell such
that this condition is satisfied, which can be done since V is compact), then
x′ ∈ B(0, |x′|) ⊂ B(0, 1), so d(T1, T2) = |x′|. So the metric d is a scalar multiple
of the Euclidean metric. This means that the closure ΩT of (T + R

d, d) is
homeomorphic to the closure of V, which is just V. �

An important property of the hull in the periodic case is that it is a compact
space. This follows immediately from Proposition 8.1.2, because V is compact.
It turns out that the periodicity condition can be relaxed [40, 31]:

Theorem 8.1.3 Let T be a tiling. Suppose that, for any R > 0, there are, up
to translation, only finitely many patches in T (i.e. subsets of T ) that fit into a
ball of radius R. Then ΩT is compact.

Proof: We give a proof different from the original one in [40]. Our proof
resembles the proof in [29], but the conditions are slightly different. Recall that
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for a complete metric space X, to prove compactness, it is enough to prove
pre-compactness (also called total boundedness), i.e. for every ε > 0 there is
N > 0 such that X is covered by a union of N ε-balls. Now let ε > 0. Choose
an R > 1

ε . Then consider the covering of ΩT by {B(T ′, ε) | T ′ ∈ ΩT }. Since
there are finitely many patches {Pi}ni=1 that fit in an R-ball around the origin,
we choose tilings Ti ∈ ΩT such that

Ti �B(0,R)= Pi.

Now let T ′ ∈ ΩT . Then T ′ has a patch Pi or a small translate of it around the
origin, so d(T ′, Ti) < ε for some Ti. We thus have

ΩT = ∪ni=1B(Ti, ε),

which proves pre-compactness and therefore compactness of ΩT . �

The condition in the theorem is called the finite pattern condition. Note that
this condition automatically implies that there is a finite number of prototiles
(i.e., finitely many tiles, up to translation). Many interesting tilings obey the
finite pattern condition, including periodic tilings and Penrose tilings. In what
follows, we will always assume that a given tiling T satisfies the finite pattern
condition. In particular, we will always assume that Ω is compact.

In the periodic case, another property of the hull is that every element T ′ of the
hull ΩT defines the same hull, i.e.

ΩT ′ = ΩT for all T ′ ∈ ΩT . (8.2)

This is due to the fact that for every T ′ ∈ ΩT , the orbit T ′ + R
d under the

group action of Rd on ΩT is dense in ΩT (note that in this construction, there
is always a dense orbit in ΩT , namely that of T itself). An arbitrary hull ΩT
for which every orbit is dense is called minimal. Note that for a minimal hull
ΩT , due to (8.2) we can drop the subscript T . In particular, we see that for
a minimal hull, there is no natural choice for an origin in the medium that is
modeled by a tiling T ∈ Ω.

Definition 8.1.4 A tiling T is said to be repetitive if for every finite patch
P in T , there is an R > 0, such that for every x ∈ Rd there is a translate of P
contained in T and in B(x,R).

In particular, this means that translates of any patch in T , no matter how large,
can be found infinitely many times in T , so T repeats itself locally. Note that
this does not imply that T repeats itself globally, i.e., that T is periodic. A
Penrose tiling is again the basic example of an aperiodic tiling that satisfies the
repetitivity condition. The following proposition is standard (see e.g. [31, 53]):

Proposition 8.1.5 ΩT is minimal if and only if T is repetitive. �
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We are mainly interested in aperiodic tilings. Note however, that in principle,
for an aperiodic tiling T , the space ΩT can contain periodic tilings (consider
tiling the plane by unit squares, and remove a finite number of edges; the hull of
this tiling will contain the original periodic tiling by unit squares). To avoid this
situation, we will say that T is strongly aperiodic if ΩT contains no periodic
tilings. Note that in the converse situation it is clear that the hull of a periodic
tiling cannot contain aperiodic tilings, since every limit point of a sequence of
periodic tilings (all necessarily with the same period) is itself a periodic tiling.
Hence we have [31]:

Proposition 8.1.6 If T is aperiodic and ΩT is minimal, then T is strongly
aperiodic.

Proof: Suppose there is a T ′ ∈ ΩT such that T ′ = T ′ + x for some x ∈ Rd.
Since ΩT is minimal, ΩT ′ = ΩT . In particular, T ∈ ΩT ′ . But T is aperiodic,
so this contradicts the fact that the hull of a periodic tiling does not contain
aperiodic tilings. �

In what follows, unless otherwise stated we will always assume that a given
tiling T is aperiodic, repetitive and satisfies the finite pattern condition. In
particular, this means that the hull is minimal and compact, and that T is
strongly aperiodic. It is important to notice that given two tilings in the hull
Ω, we cannot distinguish them locally, i.e. by looking at finite patches. Finally,
we will define an equivalence relation RT on the hull Ω by

RT :=
{

(T ′, T ′′) ∈ Ω× Ω | T ′ is a translate of T′′
}
. (8.3)

Viewing this equivalence relation as a groupoid (cf. Chapter 4), we are now in
the position to define the (truly) noncommutative analogue of the C*-algebra
C(B)⊗K.

Remark 8.1.7 The construction of the hull Ω by Kellendonk in fact resembles
the construction of the space of Penrose tilings X = K/R of Chapter 6. We will
comment on this in Section 8.5.

8.2 The noncommutative C*-algebra of observ-
ables

In aperiodic media, such as quasicrystals, Bloch’s theorem no longer holds.
Hence we need to find an alternative description of electronic motion. Bellissard
[8] has suggested to use noncommutative geometry to describe the aperiodic
case. To this effect he developed a method based on measures. We use the
topological approach of Kellendonk [29, 31], based on the hull of tilings as
defined above.
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Recall that we can associate a C*-algebra to a topological groupoid when the
latter is locally compact and admits a (left) Haar system. For our groupoid
RT as defined in (8.3), an obvious choice for a topology would be the relative
topology of the product topology on Ω×Ω. However, although Ω×Ω is compact,
as a product of compact spaces, RT is not locally compact in this topology, since
Ω lacks the Hausdorff property, just as in the Penrose case, where the groupoid
R is not locally compact in the relative topology of K ×K although K itself is
compact.

We define a topology on RT as follows: Consider the space Ω × Rd, with the
product topology, where Ω is equipped with the metric topology induced by the
metric d, and Rd is equipped with the usual Euclidean topology. Consider the
map

ϕ : Ω× Rd → RT ; (T, x) 7→ (T, T − x).

Clearly, ϕ is surjective. Moreover, ϕ is injective if and only if Ω contains no
periodic tilings. In that case, we can equip RT with the topology, called T , for
which ϕ is a homeomorphism.

Lemma 8.2.1 RT is locally compact in the topology T inherited from Ω × Rd
via ϕ.

Proof: Since Ω × Rd is locally compact, each element (T, x) of Ω × Rd has
an open neighbourhood UT,x such that UT,x is compact. Next, consider an
element (T1, T2) of RT . By definition of the equivalence relation, there is an
x ∈ Rd such that T2 = T1 − x. Thus, (T1, T2) = ϕ(T1, x). Now by continuity
of ϕ−1, ϕ(UT1,x) is an open neighbourhood of (T1, T2), and by continuity of ϕ,
ϕ(UT1,x) is a compact neighbourhood of (T1, T2). So RT is locally compact in
the topology T . �

We have equipped the groupoid RT with a topology in which it is locally com-
pact. Next, we need a left Haar system on RT . This can be constructed by
observing that the topological space Ω×Rd can be given the structure of a trans-
formation groupoid, denoted by ΩoRd, where x ∈ Rd acts on Ω by T 7→ T −x,
and using the homeomorphism ϕ to transfer the Haar system of ΩoRd to RT .
Recall from Example 4.1.3 that the groupoid structure on ΩoRd is defined as
follows:

(T, x)(T − x, y) := (T, x+ y); (T, x)−1 := (T − x,−x);
R(T, x) = T ; D(T, x) = T − x, (8.4)

for all T ∈ Ω, x, y ∈ Rd, where the unit space of the groupoid is identified with
Ω. Checking the conditions of Definition 4.1.9 of a groupoid homomorphism, it
is easy to see that ϕ is also a groupoid isomorphism between Ω o Rd and RT .
Summarizing, we have two locally compact groupoids, which are isomorphic and
homeomorphic if and only if Ω contains no periodic tilings. RT is a principal
groupoid, and from Proposition 4.1.5, it can be seen that ΩoRd is principal if
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and only if Ω contains no periodic tilings. In what follows, we assume that this
is the case. So we are describing the true aperiodic case.

Now, to construct the C*-algebras associated to these groupoids, we need left
Haar systems. Note that for the transformation groupoid, each fiber R−1(T ) =
{(T, x) ∈ Ω o Rd | x ∈ Rd} is homeomorphic to Rd, so we have a left Haar
system consisting of Lebesgue measures λ on all fibers R−1(T ). If we define a
product on Cc(ΩoRd) by

f ∗ g(T, x) =
∫
Rd

f(T, y)g(T − y, x− y)dλ(y),

and involution by
f∗(T, x) = f(T − x,−x),

it is easy to show that the usual definitions of a (matrix like) product and
involution on Cc(RT ), defined by

f ∗ g(T, T ′) =
∫
T ′′∼T

f(T, T ′′)g(T ′′, T ′)dλ̃(T ′′),

and
f∗(T, T ′) = f(T ′, T ),

are mapped bijectively to the product and involution on Cc(Ω o Rd) under
the pullback ϕ∗ of ϕ, if we set T ′ = T − x and T ′′ = T − y. This pullback
ϕ∗ : Cc(RT )→ Cc(ΩoRd) is defined by

ϕ∗(f)(T, x) := f(ϕ(T, x)) = f(T, T − x).

Note that the Haar system of RT , consisting of measures dλ̃(T ′′) = dλ̃(T − y),
comes directly from the Haar system of ΩoRd, consisting of Lebesgue measures
dλ(y). Just as in Chapter 4, we define reduced representations of Cc(Ω o Rd)
on the Hilbert spaces L2(R−1(T )) by

πT (f)ψ(x) :=
∫
Rd

f(T − x, y − x)ψ(y)dλ(y). (8.5)

Note that since R−1(T ) = {(T, x) | Rd} is homeomorphic to Rd, the reference
to T has been omitted, and ψ is seen as an element of L2(Rd).

Proposition 8.2.2 If Ω is minimal, then every πT is faithful.

Proof: Suppose that Ω is minimal, and assume that πT (f) = 0 for some f ∈
Cc(ΩoRd). Then by definition of πT ,∫

f(T − x, y − x)ψ(y)dλ(y) = 0 for all ψ ∈ L2(Rd).

Since the above holds for all x ∈ Rd and f is continuous, we get f(T−x, y−x) = 0
for all x, y ∈ Rd. Moreover, since {T − x | x ∈ Rd} is dense in Ω, we get
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f(T, y) = 0 for all y ∈ Rd, and for all T in a dense subset of Ω, so by continuity
of f , we get f ≡ 0. It follows that πT is faithful. �

So to each element of C∗(ΩoRd), an operator on L2(Rd) is associated via πT . A
simple computation shows that πT satisfies the following covariance condition:

πT+x = T (x)πTT (x)−1. (8.6)

In particular, we can try to find an element h of Cc(Ω o Rd) such that HT :=
πT (h) is the Hamiltonian of an electron moving in the aperiodic medium mod-
eled by the tiling T . Since the Hamiltonian is not bounded, this is of course not
possible. However, in the discrete case, it will be possible to find elements that
correspond to the ”tight binding” Hamiltonian on the discrete Hilbert space
`2(Zd). In the same way as πT is defined, we have reduced representations π̃T
of Cc(RT ) defined by

π̃T (f)ψ(T ′) :=
∫
T ′′∼T

f(T ′, T ′′)ψ(T ′′)dλ̃(T ′′), (8.7)

which satisfy a covariance condition similar to (8.6). The definition of π̃T is
analogous to (6.7), except that in this case, the groupoid RT is not R-discrete.
Equipping Cc(ΩoRd) and Cc(RT ) with norms in the usual way by defining

‖f‖C∗(ΩoRd) := supT∈Ω πT (f),
‖f‖C∗(RT ) := supT∈Ω π̃T (f), (8.8)

we get the C*-algebras C∗(ΩoRd) and C∗(RT ). Observe that these C*-algebras
are the reduced versions. However, in both cases, the reduced and the full
groupoid C*-algebra coincide, because of the amenability of the groupoids.

To define this concept [22], recall from Definition 3.2.12 that a state is a positive
normalized linear functional.

Definition 8.2.3 Let G be a locally compact group. A left invariant mean
is a state M on Cb(G), the algebra of continuous bounded functions on G, such
that

M(Txf) = M(f) for all x ∈ G,
where Txf is defined as Txf(y) = f(yx−1). G is amenable if there exists a left
invariant mean on Cb(G).

It can be shown that abelian groups are amenable, so Rd is amenable. There
is a similar notion of amenability for groupoids [44, 1], which we will not define
here. Let us simply state that if a group G is amenable, and X admits an
action of G, the transformation groupoid X oG is an amenable groupoid [44].
So Ω o Rd is amenable. Similarly, RT is amenable, since it is homeomorphic
and isomorphic to Ω o Rd. The main result for amenable groupoids G is that
their full and reduced C*-algebra coincide, i.e. ‖f‖ = ‖f‖red for all f ∈ Cc(G)
[44, 1]. This applies to both ΩoRd and RT . Moreover, we have:
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Proposition 8.2.4 If Ω contains no periodic tilings, C∗(ΩoRd) and C∗(RT )
are isomorphic under the continuous extension of the pullback ϕ∗ : C∗(RT ) →
C∗(ΩoRd).

Apart from trivial algebraic verifications, the proof consists of checking that ϕ∗
is continuous, i.e.

‖ϕ∗(f)‖C∗(ΩoRd) = ‖f‖C∗(RT ). (8.9)

This can be done by checking that

πT (ϕ∗(f))ϕ̃(ψ)(x) = π̃T (f)ψ(T − x), (8.10)

for all T ∈ Ω, f ∈ Cc(RT ), ψ ∈ L2(R−1(T )) and x ∈ Rd. Here,

ϕ̃ : L2(R−1(T ))→ L2(Rd); ϕ̃(ψ)(x) = ψ((T − x),

is also a map induced by ϕ. Since (8.10) holds for all T ∈ Ω, we can take the
supremum over Ω on both sides, and (8.9) holds, which proves the proposition.
These are all easy computations, and we will not do them here. �

Remark 8.2.5 Actually, if a groupG acts on a spaceX, the C*-algebra C∗(Xo
G) is isomorphic to the crossed product algebra C0(X) o G. In our case,
this means that the C*-algebra C∗(ΩoRd) is isomorphic to C(Ω)oαRd, where
the action α of Rd on the algebra C(Ω) is given through homeomorphisms on
Ω, i.e. for all (f, x) ∈ C(Ω)oα Rd, we have

αx(f)(T ) = f(T − x).

For more on crossed products, see [38]. Many authors in fact identify the trans-
formation groupoid C*-algebra with the crossed product algebra, but we will
stick with C∗(ΩoRd) for clarity.

Next, we will show that in the periodic case, C∗(Ω o R
d) is isomorphic to

C(B) ⊗ K. In particular, this will show that C∗(RT ), which is isomorphic to
C∗(Ω o Rd) in the aperiodic case, is the generalization of the crystallographic
C*-algebra of observables C(B)⊗K to the non-crystallographic case. This leads
to the following diagram:
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C(B)⊗K
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(8.11)

Note however, that in the periodic case, ϕ∗ : C∗(RT ) → C∗(Ω o Rd) is not
injective, since ϕ : ΩoRd → RT is not injective.

Proposition 8.2.6 The C*-algebra C∗(Ω o Rd) is isomorphic to C(B) ⊗ K if
Ω consists of periodic tilings by unit cells.

Proof: This proposition is due to Bellissard, and can be found in, e.g., [9]. The
proof uses the fact that in this case, Ω ' Rd/Γ = V, where Γ is the lattice of the
crystal. Then we can use the following theorem by Green, which can be found
in different versions in [33] and [35]:

Theorem 8.2.7 Let (G/H)oG be a transformation groupoid, where G acts on
G/H. Then C∗((G/H)oG) is isomorphic to C∗(H)⊗K(L2(G/H)).

Here, C∗(H) is the group C*-algebra of the group H. Specializing to our case,
where G = R

d, H = Γ, G/H = R
d/Γ ' Ω, we get the isomorphism

C∗((Rd/Γ)oRd) ' C∗(Γ)⊗K,

where the reference to the Hilbert space on which the compact operators act is
omitted. Recall from Remark 7.2.5 the isomorphism C∗(Γ) ' C(B), where we
use that C∗red(Γ) = C∗(Γ) by amenability of Γ. Proposition 8.2.6 then follows
directly from this theorem. �

Summarizing, we have:

Theorem 8.2.8 In the periodic case, the algebra C∗(ΩoRd) is isomorphic to
the C*-algebra of observables C(B) ⊗ K. In the aperiodic case, C∗(Ω o Rd) is
isomorphic to C∗(RT ), the noncommutative analogue of C(Ω/RT ). �
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So this is where physics and the philosophy of Connes come together: following
the lines of noncommutative topology [15], Ω/RT is non-Hausdorff and useless
as an ordinary topological space, i.e. C(Ω/RT ) ' C, hence Ω/RT can be seen
as a point. This means that from a commutative point of view, there is essen-
tially only one tiling. However, Ω/RT is actually a very rich space, and this is
exhibited in the noncommutative C*-algebra C∗(RT ), which is far from trivial.
As a matter of fact, this noncommutative C*-algebra turns out to be precisely
the aperiodic analogue of the C*-algebra of observables! We thus have

commutative topology ←→ noncommutative topology
periodic media ←→ aperiodic media. (8.12)

A comparison between the construction of the hull by Kellendonk and the con-
struction of the space of Penrose tilings by Connes will be given in Section
8.5.

We stress that Proposition 8.2.6 states the fact that the C*-algebra of observ-
able, generated by the (resolvent of the) Hamiltonian, can be computed without
precise knowledge of the Hamiltonian. It is the hull that contains the infor-
mation about the structure of the tilings representing the crystal, although it
doesn’t contain any information about the precise form of the potential V , ex-
cept for its (quasi-)periodicity. We will see that apparently this is enough to
obtain certain properties of the spectrum of the Hamiltonian.

The question arises how we can show that a self-adjoint operator H describes the
physics that is modeled by a tiling T . Bellissard has stated a useful criterion.
Recall that a Hamiltonian H = HT0 can be replaced by a family {HT } of
selfadjoint operators satisfying the covariance condition (8.1):

T (x)HTT (x)−1 = HT+x.

Definition 8.2.9 [9] A covariant family {HT | T ∈ Ω} of selfadjoint operators
is affiliated to a C*-algebra A if, for all f ∈ C0(R), the bounded operator f(HT )
can be represented as πT (hf ) for some hf ∈ A such that the map h : C0(R) →
A; f 7→ hf is a bounded *-homomorphism.

In particular, in the periodic case, we see that the covariant family {HT | T ∈ Ω}
of Hamiltonians, where Ω = V is the unit cell by Proposition 8.1.2, is affiliated
to the C*-algebra C∗(ΩoRd) ' C(B)⊗K in this sense. The compact operator
R(z) is given by rz(HT0), where for all z ∈ ρ(HT0) the function rz ∈ C0(R) is
given by rz(t) := 1

z−t . Next, we define hrz ∈ C∗(ΩoRd) by

hrz (T, y) := rz(HT )δ(y).

Using the definition of the representation πT given by (8.5), we see that the
resolvent R(z) = rz(HT0) can be represented as πT (hrz ).
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8.3 The discrete hull

The computation of the C*-algebra of observables can actually be simplified by
discretizing the motion of electrons. A physical motivation for discretization
is the so-called tight binding approximation, which will be discussed below.
Mathematically, discretization is motivated by the fact that the discrete hull,
called Ωpunc, is an ”abstract transversal” to the action of Rd on Ω, which means
that Ωpunc is a closed subset of the unit space Ω of the transformation groupoid
Ω o Rd meeting every orbit (under the Rd-action) in Ω. A similar concept is
known in foliation theory [15]. The main result is that the discrete analogue of
the groupoid C*-algebra of observables is stably equivalent to the continuous
C*-algebra of observables, cf. Theorem 8.3.8. Therefore, they have the same
K-theory, and all K-theoretic results can be obtained in the discrete model,
which is often simpler to handle than the continuous case. Moreover, we will
explicitly identify the discrete momentum and the position operators in the
discrete groupoid C*-algebra. This is an extra justification for the name ”C*-
algebra of observables”.

Every solid can be modeled by a Delone set, with an atom placed at each
point. An electron moving in the solid is subject to a Schrödinger operator H
with potential V , and this potential is mainly a superposition of the Coulomb
potentials of the ions. In particular, in a mono-atomic crystal, we have

V (x) =
∑
a∈Γ

v(x− a), (8.13)

where Γ is the lattice, and v(x) can be approximated by the Coulomb potential
of a single atom at the origin, modified by the screening effect of other electrons.
Now let φat be an eigenfunction of the single atom Hamiltonian Hat := −∇2 +
vat, with energy E. The Coulomb potential vat tends to zero at infinity, leading
to exponentially localized wave functions φat and a discrete spectrum, bounded
from below. Next, for all a ∈ Γ, we define the function φa by φa(x) := φ(x −
a), where φ is derived from the single atom wave function φat. Then in the
neighbourhood of the position a ∈ Γ, the wave function of H with energy E will
look like φa, provided the overlap between the Coulomb potentials of different
ions is small, which is, for example, the case when the interatomic distance is
large. The idea of the ”tight binding approximation” [2] is that only local effects
are important in order to obtain the spectrum of H, because of the negligible
influence on an electron of the potential of atoms that are far away. In particular,
in the sum in (8.13), only a few atoms have to be considered, for example only
the nearest neighbours of the atom whose unit cell contains the position x of
the electron. This means that if we orthonormalize the system {φa | a ∈ Γ},
the matrices Vaa′ , defined by

Vaa′ := 〈φa|V φa′〉,

only have nonzero entries near the diagonal. Now (φa)a∈Γ can be seen as an
element of `2(Γ), so we may replace the Hamiltonian H on L2(Rd) by its discrete
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tight-binding version HTB on `2(Γ). In the simplest case, namely the one-
dimensional lattice Γ = Z, where the potential Vnn′ is diagonal and only hopping
to nearest neighbours is considered, we get

HTBψ(n) = −tψ(n+ 1)− tψ(n− 1) + V (n)ψ(n),

where t is the hopping amplitude (typically, 0 ≤ |t| ≤ 1), and V (n) := Vnn. We
see that the matrix corresponding to the operator HTB is tridiagonal, i.e.,

(HTB)nm =

 V (n) if n = m,
−t if |n−m| = 1,
0 otherwise.

The motion of an electron then consists of ”hopping” from one lattice point to
a neighbouring one. We see that in general, by looking only at local effects, the
Schrödinger operator H on L2(Rd), which is in general unbounded, is replaced
by its discrete version HTB on `2(Zd), which is a bounded operator. We will
now reformulate this tight binding approximation for arbitrary aperiodic solids
in d dimensions. For this, we will need the notion of a discrete hull.

Figure 8.1: A punctured tiling

Recall that given a Delone set, we can form a corresponding tiling (for example
by the Voronoi construction), and vice versa. Indeed, to construct a Delone set
from a d-dimensional tiling T , we use so-called punctured tiles [29, 31]. For each
tile type (or ”prototile”) of a tiling T , we choose points x(t) in the interior of
the tiles t, which are called punctures, in such a way that if t1 and t2 are two
copies of the same prototile (that is, they are translates of each other by some
x ∈ Rd), then their punctures are also translates of each other by x, i.e.,

t1 = t2 + x for some x ∈ Rd ⇒ x(t1) = x(t2) + x. (8.14)

Note that we use a slightly different definition of prototile: instead of defining
a prototile as an equivalence class under congruence, we now define it as an
equivalence class under translation. In the above way, we’ll puncture all tiles in
all tilings in the hull ΩT . Note that in the periodic case of a tiling by translates
of the Voronoi unit cell V, the obvious choice would be to assign a puncture
in such a way that the Voronoi cell of the puncture gives the original unit cell
again, i.e.

V(x(V)) = V.

In general, if we can recover the positions of the atoms from the structure of
the tiling, it is obvious to place the punctures precisely at the locations of the
atoms, although in principal any point in the tile will suffice, as long as it lies
in the interior of the tile and satisfies (8.14).
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Definition 8.3.1 Let T be a tiling. The discrete hull Ωpunc of T is the subset
of ΩT consisting of tilings that have a puncture of a tile in the origin, i.e.,

Ωpunc := {T ′ ∈ ΩT | x(t) = 0 for some t ∈ T ′}.

Moreover, for each tiling T we define T punc to be the subset of Rd consisting of
all the punctures of T .

Example 8.3.2 In the periodic case of a tiling by unit cells Ωpunc is just the
point set of atomic positions in the unit cell, just as Ω is the unit cell itself (see
Figure 8.2). Furthermore, in the periodic case T punc is a point lattice. In the
general case, T punc is a Delone set, which is the generalization of a point lattice
to the aperiodic case.

Figure 8.2: For a periodic tiling, the discrete hull consists of the atomic positions
in the unit cell

To justify the name ”discrete hull”, we observe that Ωpunc is indeed discrete:
note that for every tiling T ′ ∈ Ωpunc, there is an ε > 0 such that T ′ + x is not
in Ωpunc, for all x with 0 < |x| < ε. Furthermore, Ωpunc is a closed subset of Ω:
let (Tn) ∈ Ωpunc converge to T ∈ Ω, then ∀ε > 0, ∃N such that ∀n ≥ N , there
are vectors x, y ∈ B(0, ε) such that

(Tn + x) �B(0, 1ε )= (T + y) �B(0, 1ε ) .

But since ε goes to 0, |x| and |y| both tend to zero, so for the tile t ∈ T covering
the origin, we get x(t) = 0, because x(tn) = 0 for every n, where tn is the tile
covering the origin in Tn. Therefore, T ∈ Ωpunc, and Ωpunc is closed.

Proposition 8.3.3 If T is repetitive and satisfies the finite pattern condition,
then its discrete hull Ωpunc is a Cantor set.

Proof: Ωpunc is compact as a closed subset of ΩT (which is compact because
T satisfies the finite pattern condition). Next, we show that Ωpunc is totally
disconnected. Let P be a patch in T , and t ∈ P a tile. Then P −x(t) is a patch
with a puncture in the origin. Define

U(P, t) := {T ′ ∈ Ω | P − x(t) ⊂ T ′}. (8.15)

Observe that U(P, t) ⊂ Ωpunc. We will show that the sets U(P, t) are both
open and closed, and that they generate the relative topology of Ωpunc, thereby
establishing total disconnectedness. Let (Tn) be a sequence in U(P, t), with
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limn→∞ Tn = T ∈ Ωpunc. Now ∀ε > 0 there is an N such that ∀n ≥ N there
are x, y ∈ B(0, ε) such that

(Tn + x) �B(0, 1ε )= (T + y) �B(0, 1ε ) .

But for ε small enough, Tn+x and T +x are not elements of Ωpunc unless x = 0.
So we have

Tn �B(0, 1ε )= T �B(0, 1ε ) .

Now for ε small enough, P − x(t) fits in B(0, 1
ε ), so T ∈ U(P, t), and U(P, t) is

closed. A same argument for Ωpunc\U(P, t) shows that U(P, t) is open. More-
over, the sets U(P, t) generate the same topology as the open balls B(T, ε) that
generate the relative topology induced by the metric d. This can easily be shown
easily by checking that for every T ∈ Ωpunc, and every set U(P, t) 3 T , there is
an ε > 0 such that T ∈ B(T, ε) ⊂ U(P, t), and that for every B(T, ε), there is
are P and t in T such that T ∈ U(P, t) ⊂ B(T, ε).

Finally, we have to show that Ωpunc consists entirely of limit points, or equiva-
lently, that Ωpunc has no isolated points, i.e. for any T ′ ∈ Ωpunc, for all ε > 0,
there is a tiling T ′′ ∈ Ωpunc such that d(T ′, T ′′) < ε. Now let T ′ ∈ Ωpunc, and
ε > 0. Observe that since T is repetitive, ΩT is minimal, and every element of
Ω is repetitive, in particular T ′. Let P ⊂ T be a patch around the origin such
that T ′ �B(0, 1ε )= P �B(0, 1ε ). Since T ′ is repetitive, there is an R > 0 such that
for every x ∈ Rd, there is a translate P + x′ of P in T ′ such that P + x′ lies
in T ′ ∩B(x,R). Evidently, P covers the origin in T ′ − x′, P , and in particular,
T ′ − x′ ∈ Ωpunc. Now we have

(T ′ − x′) �B(0, 1ε )= T ′ �B(0, 1ε ),

which means that d(T ′, T ′ − x′) < ε, and this proves the proposition. �

Remark 8.3.4 In [29], Kellendonk works with the set T punc of one tiling T ,
whereas in [31], he uses the discrete hull Ωpunc, which is the space of tilings with
a puncture at the origin. These two approaches correspond to different frames
of reference: in the first case, the electron is moving, while the tiling (i.e. the
solid) is at rest. In the second case, the electron is at rest in the origin, while
the tiling gets (discretely) translated.

On the discrete hull Ωpunc, we define the obvious equivalence relation

Rpunc :=
{

(T ′, T ′′) ∈ Ωpunc × Ωpunc | T ′′ is a translate of T ′
}
. (8.16)

It is clear that Rpunc is just the discrete version of RT , i.e.,

Rpunc = RT ∩ (Ωpunc × Ωpunc).

In particular, Rpunc is a topological groupoid with the induced topology of RT ,
inherited from Ω × Rd. In practice, this means that a sequence (Tn, Tn − xn)
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in Rpunc converges to (T, T − x) if and only if both d(Tn, T ) and |xn − x| tend
to zero. Here the metric d on Ωpunc is the one induced from the metric on Ω.
Note that Rpunc is locally compact and R-discrete. Hence, we can form the
C*-algebra C∗(Rpunc) by defining product and involution on Cc(Rpunc) in the
usual way (compare to the Penrose case in Chapter 6):

f ∗ g(T, T ′′) :=
∑

T ′∼T ′′
f(T, T ′)g(T ′, T ′′), (8.17)

f∗(T, T ′) := f(T ′, T ). (8.18)

Again, we have reduced representations πT : Cc(Rpunc)→ `2(R−1(T )), labeled
by elements T in the unit space Ωpunc, defined by

πT (f)ψ(T ′) :=
∑

T ′′∼T ′
f(T ′, T ′′)ψ(T ′′). (8.19)

Of course, πT satisfies the covariance condition (8.6). We proceed to define a
C*-norm by

‖f‖C∗(Rpunc) := sup
T∈Ωpunc

‖πT (f)‖,

yielding the C*-algebra C∗(Rpunc). This construction is the same as the con-
struction of C∗red(R) of Chapter 6. We can identify C∗(Rpunc) as the discrete
version of the C*-algebra of observables. Note that C∗(Rpunc) is a unital C*-
algebra, with unit I defined by

I(T, T + x) := δx,0.

This is well defined since x can only have discrete values, i.e. there is always an
ε > 0 such that (T, T + x) /∈ Rpunc for all x such that 0 < |x| < ε. Note that
the continuous version C∗(RT ) has no unit.

Of course, we can also define the discrete version of the transformation groupoid
Ω o Rd, and its corresponding C*-algebra, which are isomorphic to Rpunc and
C∗(Rpunc) respectively, as long as Ω contains no periodic tilings. Note however
that only pairs (T, x) for which x ∈ T punc are elements of this discrete trans-
formation groupoid Gpunc, where we have identified the set T punc of punctures
of a tiling with the discrete subgroup of Rd that generates T punc as the orbit
of the origin under the group action (in the periodic case, this identification
corresponds to the identification of the lattice Γ with the orbit, i.e. the point
lattice). Equivalently, Gpunc can be defined as

Gpunc :=
{

(T, x) ∈ Ωpunc × Rd | T − x ∈ Ωpunc
}
. (8.20)

Typically, the discrete transformation groupoid Gpunc will look like ΩpuncoZd.
A tiling is called a decoration of Zd [29] if the following holds: suppose that
F is the (finite) set of pattern classes in T made of a tile t0 together with all the
tiles that touch t0 at a common hypersurface (this is sometimes called ”the first
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corona” of t0), and define x0 := x(t0). Then T is a decoration of Zd if there is
an action α of Zd on Ωpunc such that for all P ∈ F , the following holds:

∀x ∈ P punc\{x0} ∃s ∈ {±ei}di=1 such that ∀T ∈ U(P, t0) : αs(T ) = T − x.
(8.21)

Here {ei}i denotes the standard basis of Zd.

Example 8.3.5 Of course, the periodic case, of a tiling T consisting of unit
hypercubes, is a trivial example of a decoration of Zd. In this case, α just acts
as a translation, i.e. αs(T ) = T − s.

In general, the action α of Zd on T depends only on a finite patch around
the origin, and consists of next-neighbour shifts. αs is continuous, and we
have αs(U(T, x0)) = U(T, x) for x and x0 as in (8.21). Therefore, the map
ϕ : Ωpunc × Zd → Rpunc; (T, s) 7→ (T, αs(T )) is continuous with respect to
the product topology. Moreover, it is surjective, since ϕ({T} × Zd) = R−1(T ).
Again, ϕ is a homeomorphism if and only if Ωpunc contains no periodic tilings.

Now, recall that by projecting a higher dimensional periodic lattice onto an
irrational cut, quasiperiodic tilings can be obtained cf. Section 2.4.

Proposition 8.3.6 If T is a quasiperiodic tiling obtained via the projection
method, then it is a decoration of Zd.

Proof: Let π‖ (π⊥ respectively) define the projection from R
d × Rn to the

physical space Rd (respectively the internal space Rn), let Γ be a lattice in
R
d × Rn, and let M denote the acceptance domain in Rn. For simplicity we

assume Γ = Z
d+n, but the argument is valid for every lattice Γ in Rd × Rn.

Then T is a tiling with T punc = Λ(M), where Λ(M) is defined as

Λ(M) := {π‖(a) | a ∈ Γ such that π⊥(a) ∈M}.

Now let t0 be a tile in T with puncture x0, and let F be the set of pattern classes
consisting of first coronas of t0, and let P ∈ F . Next, we have an action S of Zd

on the set U(P, t0) by defining Ssd for every standard basis-vector sd ∈ Zd as

αsd(T ) = π‖(π−1
‖ (T )− sd+n),

where sd+n denotes the standard basis-vector in Zd+n such that sd = π‖(sd+n).
Since π‖ restricted to Zd+n is injective, this action is well defined. Moreover, it
satisfies (8.21). �

Example 8.3.7 By the above proposition, the Fibonacci chain, which can be
obtained via the projection method (see Figure 8.3), is a decoration of Z. We
will discuss electronic motion on a Fibonacci chain in Section 9.3.
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Figure 8.3: The Fibonacci chain, obtained via the projection method, is a dec-
oration of Z

Actually, also many of the quasiperiodic tilings obtained via the substitution
method, among which the Penrose tilings, can be seen as decorations of Zd [30].
In all these cases, the transformation groupoid Gpunc is given by Ωpunc oα Zd,
where α denotes the action of Zd on Ωpunc. However, an important difference
with the continuous transformation groupoid lies in the fact that since for every
tiling T ∈ Ωpunc the fiber R−1(T ) can be identified with T punc, all fibers are
different, which is in contrast with the continuous case, where R−1(T ) = R

d for
all T ∈ Ω. As mentioned at the beginning of this section, Ωpunc is an abstract
transversal to the Rd-action [35, 31], which means that it is a closed subset of
the unit space Ω of the transformation groupoid ΩoRd meeting every orbit in
Ω. Using a theorem of [35], we have the following important fact [11]:

Theorem 8.3.8 C∗(Rpunc) is stably equivalent to C∗(RT ).

Actually, the main theorem in [35] states that if there is a (G,H)-equivalence
between two groupoids (which is the notion of Morita equivalence for groupoids,
see [34]), their C*-algebras are Morita equivalent. Moreover, in [35], it is shown
that for an abstract transversal N ⊂ G0 for a groupoid G, there is a (G,GNN )-
equivalence, where GNN = R−1(N) ∩ D−1(N). Specializing to our case, where
G = ΩoRd, G0 = Ω, N = Ωpunc, we see that

GNN = R−1(Ωpunc) ∩D−1(Ωpunc) = Gpunc,

so Ω o Rd is groupoid-Morita equivalent with Gpunc, and from the theorem
in [35], it then follows that C∗(Ω o Rd) and C∗(Gpunc) are Morita equivalent,
hence stably equivalent. Using the isomorphisms between RT and Ω o Rd and
between Rpunc and Gpunc, the theorem follows.

Corollary 8.3.9 K0(C∗(Rpunc)) = K0(C∗(RT )).

This is immediate from the above theorem and Corollary 5.2.17. �

This corollary will play an important role in the gap labelling of Schrödinger
operators. In general, it follows from the above theorem that the discrete hull
yields as much information about the spectrum of the Hamiltonian as the con-
tinuous hull, as long as this information is contained in the stabilized versions
of the C*-algebras. Since the discrete version is often easier to compute, this is
a very useful fact. In what follows, sometimes we will only prove certain prop-
erties in the discrete case, using the above Morita equivalence to apply them to
the continuous case.
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8.4 The discrete C*-algebra of observables

Until now, the construction of the various C*-algebras has been rather abstract.
However, in the discrete case, we can actually identify a function h ∈ C∗(Rpunc)
such that

πT (h) = HT ,

for all T ∈ Ωpunc, where {HT } is the covariant family of discrete Schrödinger
operators affiliated to C∗(Rpunc). Note that this is not possible in the continuous
case, because the continuous Hamiltonian is not a bounded operator, in contrast
to the discrete one. To prove the above assertion, we first consider an electron
moving in a tiling T , hopping from tile to tile. If we change our reference frame
to that of the electron, we can choose the electron to stay in the origin, and
move the tiling instead. This is exactly what happens in the Hilbert space
`2(R−1(T )). Recall that the fiber R−1(T ) is defined by

R−1(T ) = {(T, T ′) ∈ Rpunc | T ′ = T + x for some x ∈ Rd}.

So R−1(T ) can be identified with the set of all translates of T in Ωpunc, i.e.,

R−1(T ) = {T − x | x ∈ T punc}. (8.22)

Now, the family of discrete Hamiltonians HT acts on `2(R−1(T ) by

HTψ(T ′) :=
∑

T ′′∈R−1(T )

hT (T ′, T ′′)ψ(T ′′), (8.23)

where hT (T ′, T ′′) is the matrix element indexed by T ′, T ′′ ∈ R−1(T ). A more
convenient way to define the matrix of HT can be obtained if one observes that
R−1(T ) is actually homeomorphic to T punc, which is immediate from (8.22).
This homeomorphism between R−1(T ) and T punc reflects the equivalence of the
different reference frames: in the first case, the electron sits in the origin, and
the tilings are translated (that is, the wave function ψ takes different values on
different tilings, which are all discrete translates of each other); in the second
case, we consider an electron hopping in T punc from punctured tile to punctured
tile (note that here everything happens in only one tiling T , so this is the most
natural point of view). In the latter case, we can define the Hamiltonian HT by

HTψ(x) =
∑

x′∈Tpunc
HT (x, x′)ψ(x′), (8.24)

where ψ ∈ `2(T punc) and HT (x, x′) are matrix elements indexed by x, x′ ∈
T punc. Note that HT (x, x′) is related to hT (T ′, T ′′) by

hT (T − x, T − x′) = HT (x, x′). (8.25)

If we view (8.25) as the definition of hT , we see that we can drop the superfluous
subscript T . Then the resulting h can actually be seen as a function on Rpunc.
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Now, in the tight binding representation, only local effects contribute to the
Hamiltonian, which means that only the punctures x′ of the tiles that lie in a
finite patch P around x contribute. This means that the sum in (8.24) may
be restricted to x′ ∈ P punc, the other elements HT (x, x′) being 0. It follows
that HT is a bounded operator on `2(T punc), so there is no need to look at the
resolvent of HT anymore. We thus have [8]:

Proposition 8.4.1 Let HT be given by (8.24). Then there is an element h ∈
C∗(Rpunc) such that the matrix elements HT (x, x′) of the operator HT are given
by

HT (x, x′) = h(T − x, T − x′). (8.26)

Moreover, we have πT (h) = HT .

Proof: Define h by (8.25). Note that h is continuous on Rpunc. Moreover, it
has compact support, since HT (x, x′) is only nonzero on a finite patch around
x. Finally, we have

πT (h)ψ(T ′) =
∑

T ′′∼T ′
h(T ′, T ′′)ψ(T ′′) = HTψ(T ′),

for all T ′ ∈ R−1(T ), ψ ∈ `2(R−1(T )). �

Actually, in C∗(Rpunc) we can even identify the discrete position and the trans-
lation operators that generate the C*-algebra of observables, namely by con-
structing a C*-algebra Apunc that is isomorphic to C∗(Rpunc). Recall that the
discretization of the Hamiltonian is motivated by the tight binding approxima-
tion. In particular, it is assumed that the motion of an electron is subject to
local effects only. In other words, we just look at finite patches P in our tiling
T . Following [31], we consider triples (P, t1, t2), where P is a finite patch in T ,
and t1, t2 ∈ P (possibly, t1 = t2). Two of these triples are called equivalent if
one is a translate of the other. We define the doubly pointed pattern class
[P, t1, t2] to be the equivalence class of (P, t1, t2) under translation. Next, we
define Apunc to be the C*-algebra generated by elements e[P, t1, t2], subject to
the involution

e[P, t1, t2]∗ = e[P, t2, t1], (8.27)

and with a product defined as follows: if (P, t1, t2) and (P ′, t′1, t
′
2) are both

contained in a larger patch in such a way that t2 = t′1, then the product is
defined by

e[P, t1, t2]e[P ′, t′1, t
′
2] = e[P ∪ P ′, t1, t′2]; (8.28)

otherwise, the product is 0. These elements e[P, t1, t2] can be identified with
the discrete momentum and position operators, cf. below.

Proposition 8.4.2 [31] The C*-algebra Apunc, generated by all elements of the
form e[P, t1, t2], is isomorphic to C∗(Rpunc).
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Proof: Recall that the subsets U(P, t) of Ωpunc, defined in (8.15), are both
open and closed, and that they generate the topology of Ωpunc. Consider the
map

U(P, t1)→ U(P, t2); T ′ 7→ T ′ − x(t2) + x(t1).
Note that this map is well defined, and is in fact a homeomorphism. The graph
G(P, t1, t2) of this map, defined by

G(P, t1, t2) := {(T ′, T ′ − x(t2) + x(t1)) | T ′ ∈ U(P, t1)},

is a subset of Rpunc. Let f [P, t1, t2] denote its characteristic function. Us-
ing similar arguments as in the proof of Proposition 8.3.3, one can show that
G(P, t1, t2) is both open and compact, and that these sets generate the topol-
ogy of Rpunc. Therefore, f [P, t1, t2] ∈ Cc(Rpunc), and the linear span of the
f [P, t1, t2]’s is dense in Cc(Rpunc). Using the definition of the product and
involution on Cc(Rpunc), (8.17) and (8.18), we get

f [P, t1, t2]f [P ′, t′1, t
′
2](T, T ′) =

∑
T ′′∼T ′

f [P, t1, t2](T, T ′′)f [P ′, t′1, t
′
2](T ′′, T ′).

Clearly, only if T ′′ = T − x(t2) + x(t1) = T ′− x(t′2) + x(t′1), the sum is nonzero.
Then (8.28) and (8.27) follow. Likewise, f [P, t1, t2]∗(T, T ′) = f [P, t1, t2](T ′, T ) =
f [P, t2, t1](T, T ′), for all (T, T ′) ∈ G(P, t1, t2), which coincides with (8.27).
�

Actually, since U(P, t) is both open and closed, its characteristic function is an
element of the C*-algebra C(Ωpunc). In this way, we see that there is a unital
injective *-homomorphism from C(Ωpunc) into Apunc, sending the character-
istic function of U(P, t) to e[P, t, t]. Therefore, C(Ωpunc) can be seen as the
subalgebra of Apunc generated by the elements e[P, t, t].

Finally, we can identify the elements e[P, t1, t2] as discrete translation and po-
sition operators: momentum-independent observables will be functions of the
elements e[P, t, t], which describe whether an electron is at the tile t in a patch
P . Likewise, given two neighbouring tiles t1 and t2, the element e[{t1, t2}, t1, t2]
will describe the motion of an electron from a tile t2 to a tile t1. Note however,
that e[{t1, t2}, t1, t2] describes the hopping from t2 to t1 for all neighbouring tiles
t1 and t2 in every patch P in a tiling T with a translate of {t1, t2} lying in P .
Recall that in the tight binding approximation, only local effects are taken into
account. In particular, we only consider the action of the operator e[P, t1, t2]
on the patch P , regardless of the position of P in the tiling T . The operators
e[P, t1, t2] are called ”partial translations” in [31]. Observe that

e[P, t1, t2]e[P, t1, t2]∗ = e[P, t1, t1]
e[P, t1, t2]∗e[P, t1, t2] = e[P, t2, t2], (8.29)

so hopping from one tile to another and back is the same as not hopping at all.
Note that if {ti}ni=1 is the set of prototiles, then

n∑
i=1

e[{ti}, ti, ti]
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is a unit for the C*-algebra Apunc. We have seen that indeed, our discrete
C*-algebra of observables C∗(Rpunc) can be identified with the C*-algebra gen-
erated by discrete translation and position operators. In the following, we won’t
distinguish between C∗(Rpunc), C∗(Gpunc) and Apunc if this is not necessary.
Similarly, we will use the notation AT for the continuous C*-algebras of observ-
ables, C∗(ΩoRd) and C∗(RT ).

8.5 Comparison with Connes’s space of Penrose
tilings

The construction of the hull Ω and its noncommutative C*-algebra by Kellen-
donk resembles the construction of the space of Penrose tilings X = K/R and its
noncommutative analogue (Chapter 6), although the resemblance is somewhat
blurred by the use of the index sequences in the Penrose case. Recall that in the
latter case an index sequence was assigned to a triangle α in some Penrose tiling
T . Alternatively, one could assign a similar sequence to the origin of a plane
covered by a Penrose tiling, as long as the origin lies in the interior of some
triangle. Then isometric tilings define equivalent sequences, i.e., sequences that
coincide eventually. So essentially, whereas the hull is the set of all translates
of a certain tiling, endowed with a certain topology, the space of Penrose tilings
X is the set of all images under isometries (that is, both translations and or-
thogonal transformations) of a certain Penrose tiling, where equivalent Penrose
tilings are identified. We see that in the construction of the space of Penrose
tilings every triangle α is reduced to only one point of its interior, and this con-
struction is generalized by Kellendonk, using punctured tiles. Therefore, Ωpunc
plays the role of K. In particular, observe that these are both Cantor sets.

These Cantor sets are the unit spaces of the equivalence relation groupoids Rpunc
and R, respectively. The difference between the equivalence relations is that for
the Penrose case two tilings are equivalent if and only if there is an isometry
between them, whereas for the equivalence relation RT on the hull, two tilings
have to be translates of each other to be equivalent. We have seen that Rpunc is
isomorphic to the transformation groupoid Gpunc, which reduces to ΩpuncoαZd

in many cases. In particular, for Kellendonk’s hull, the transformation group
is an (abelian) group of translations. We can ask ourselves whether there is a
similar transformation groupoid for the space of Penrose tilings. The transfor-
mation group is in this case a (non-abelian) subgroup of SL(2,R), because it
not only contains translations, but also rotations and reflections. On the level
of the Cantor space K of sequences in 0’s and 1’s, we can define the transforma-
tion groupoid G by introducing the group Hflip of ”finite flips”, that transforms
finitely many 0’s of a sequence in K into 1’s and vice versa. Then G can be
defined as

G :=
{

(z, α) ∈ K ×Hflip | α(z) ∈ K
}
,

and we see that G is isomorphic to R by the map (z, α) ∈ G 7→ (z, α(z)) ∈ R,
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just as Gpunc is isomorphic to Rpunc. On the level of Penrose tilings, we can
puncture every tile α in such a way that if α′ is an isometric copy of α, i.e.
α′ = s · α for some s ∈ SL(2,R), then x(α′) = s · x(α), where x(α) denotes
the puncture of α, as usual. Then, denoting the space of Penrose tilings with a
puncture in the origin by Y (such that Y ' K, and X = Y/SL(2,R)), we get
the transformation groupoid

Y o SL(2,R) :=
{

(T, s) ∈ Y × SL(2,R) | s · T ∈ Y
}
.

Finally, observe that for a Penrose tiling T , Ωpunc is certainly not equal to K,
and the same holds on the groupoid level and the C*-algebra level [29]. Note
that in principle the construction of Connes may be generalized to arbitrary
substitution tilings, such as the Fibonacci chain, but since it explicitly uses the
index sequence associated to a substitution tiling, it can not be generalized to
tilings that do not have the substitution property. In particular, the C*-algebra
C∗(Rpunc) will in general not be an AF-algebra, in contrast to C∗red(R). In
conclusion, the construction of C∗(Rpunc) by Kellendonk uses the philosophy of
the construction of C∗red(R) by Connes, but yields different results.
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Chapter 9

Gap labelling

In this chapter we assume that we have an aperiodic tiling T , with hull Ω, and a
covariant family of Schrödinger operators {HT }T∈Ω affiliated to the C*-algebra
AT . We want to know more about the spectrum of HT . Recall that in the case
of a periodic crystal, the spectrum has a band structure, and the integrated
density of states is defined as

N(E) := lim
m→∞

1
md|V|

NV(m)(E),

where NV(m)(E) is the number of eigenvalues of HV(m) up to E, and V(m) is the
subset of Rd obtained by stacking up md unit cells. Essentially, the integrated
density of states is the number of one-electron states per unit volume up to
a certain energy. We can generalize this to the aperiodic case, provided that
the material we are observing is homogeneous, which means that if we compare
large regions, they look very much the same. In other words, it turns out to
be useful to assume that the tiling T satisfies the finite pattern condition of
Theorem 8.1.3, such that the hull is a compact space.

Definition 9.0.1 Let G be a locally compact group. A Følner sequence is
a sequence (Λn) in G of open subsets Λn, each with finite Haar measure |Λn|,
such that ∪∞n=1Λn = G, and such that for all x ∈ G,

lim
n→∞

|Λn∆(x · Λn)|
|Λn|

= 0, (9.1)

where ∆ denotes the symmetric difference of sets, V∆W = (V ∪W )\(V ∩W ).

A Følner sequence (Λn) defines an invariant mean M on Cb(G) by

M(f) := lim
n→∞

1
|Λn|

∫
Λn

f(x)dλ(x),
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and it can be shown [22] that there is a Følner sequence in G if and only if G
is amenable. Specializing to the continuous case, where G = R

d acts on the
hull Ω, it is easy to see that if we define Λn to be the hypercube centered at
the origin with length n, (Λn) is a Følner sequence. Of course, we can apply
the same construction to our tiling T , and look at patches Pn, defined as the
smallest patch covering the hypercube Λn. In this case, Følner’s condition (9.1)
implies that surface effects are negligible compared to volume effects, i.e.

lim
n→∞

|∂Pn|
|Pn|

= 0,

where ∂Pn is the set of tiles that cover the boundary of the hypercube Λn, and
|P | denotes the Lebesgue measure of the patch P as a subset of Rd. One can
now define

NT,Λn(E) := ]{E′ ∈ σ(HT,Λn) | E′ ≤ E},

where HT,Λn is the Hamiltonian HT restricted to Λn, acting on the Hilbert space
L2(Λn), subject to certain boundary conditions. The integrated density of
states (IDS) NT : R→ R

+ is then defined by

NT (E) := lim
n→∞

1
|Λn|

NT,Λn(E). (9.2)

In the discrete case, when G = Z
d acts on Ωpunc, the density of states can be

defined in a similar way. The existence of the limit is in general a delicate matter,
but under reasonable conditions [36], it can be shown that the IDS indeed exists,
and is independent of the chosen boundary conditions (since surface effects are
negligible) [7]. It seems obvious that the integrated density of states NT (E)
is actually independent of T ∈ Ω, because of the homogeneity of the solid.
Actually, we have

NT (E) = NT+x(E),

for all x ∈ Rd, so by minimality of Ω, NT is constant as a function of T on a
dense subset T + Rd of Ω. This is an immediate consequence of the fact that

σ(HT ) = σ(T (x)HTT (x)−1) = σ(HT+x),

where we used the covariance condition and the invariance of the spectrum under
unitary transformations. Later, we will couple this to the measure structure on
Ω, cf. Section 9.1.

It is clear that the IDS is a nonnegative, nondecreasing function of E ∈ R that
is constant on gaps in the spectrum, just as in the periodic case. Moreover,
one can show that it is absolutely continuous with respect to E if H has no
eigenvalues (i.e., if its pure point spectrum is empty) [36]. In this case one can
once more define the density of states to be the derivative dNT

dE of the IDS.
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9.1 Shubin’s formula

Next, we want to link the IDS to our C*-algebra AT = C∗(ΩoRd). Define the
operator trace Tr of a bounded operator A on a separable Hilbert space H
with orthonormal basis ei by

Tr(A) :=
∞∑
i=1

〈ei, Aei〉.

This trace is independent of the choice of a basis in H if A is trace-class,
i.e., if Tr|A| < ∞, where |A| :=

√
A∗A [32]. Now observe that NT,Λ(E) is

in fact equal to the operator trace of the eigenprojection χ(−∞,E](HT,Λ) onto
the eigenstates of HT,Λ with energy less that or equal to E, where χ(−∞,E] is
the characteristic function of the interval (−∞, E]. Since there are only finitely
many such eigenstates, we get

NT (E) = lim
n→∞

1
|Λn|

TrΛn(χ(−∞,E](HT,Λn)), (9.3)

where TrΛn is the restriction of the operator trace Tr on L2(Rd) to L2(Λn).
Now we can describe the IDS by using the C*-algebra C∗(Ω × Rd) to which
H is affiliated. First, we want to show the existence of a translation invariant
probability measure on Ω, i.e., a measure µ such that µ(Ω) = 1 and such that
for every T ∈ Ω and every ε > 0, we have

µ(B(T, ε)) = µ(B(T + x, ε))

for all x ∈ Rd. Moreover, we assume that µ is ergodic under the action of Rd,
i.e., every invariant subset of Ω has measure 0 or 1.

Proposition 9.1.1 There exists a translation invariant, ergodic probability mea-
sure µ on Ω.

Proof: [7] Recall from Definition 8.2.3 that since Rd is amenable, there exists
an invariant mean M on the C*-algebra of continuous bounded functions on Rd.
Now let f ∈ C(Ω), and define the function F : Rd → C by F (x) := f(T − x)
for some fixed T ∈ Ω. Then F is continuous and bounded on Rd, and the
map µ̃ defined on C(Ω) by µ̃(f) := M(F ) is a positive linear map such that
µ̃(IΩ) = M(IRd) = 1. By Riesz’ representation theorem, µ̃ uniquely defines a
measure µ (and vice versa) by

µ̃(f) =
∫
fdµ. (9.4)

As usual, the functional µ̃ and the measure µ will be identified with each other,
and we will omit the˜when no confusion arises. From the above, it is clear that
µ is a probability measure, which is translation invariant because of the left
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invariance of the mean M . Moreover, it is easy to see that µ is ergodic: since
Ω is minimal, the orbit of every T ∈ Ω under the action of Rd lies densely in Ω,
hence every translation invariant subset of Ω must lie densely in Ω, from which
ergodicity follows. �

Note that µ can actually be seen as the frequency of the occurrence of a patch
P in a tiling T : a subset B(T, ε) ⊂ Ω consists of tilings with a certain patch P
(or a small translate of it) covering the ball B(0, 1

ε ) in Rd. The larger the value
of µ(B(T, ε)), the more often the patch P occurs, because of the translation
invariance and the fact that T + Rd is dense in Ω.

Since µ is ergodic, we can apply the Birkhoff ergodic theorem, which can
be stated as (see for example [41]):

Theorem 9.1.2 Let Ω be a compact space with a probability measure µ that is
ergodic and invariant under the action T of an amenable group G on Ω. Then
the left Haar measure λ on G can be normalized in such a way that for all
f ∈ C(Ω), for µ-almost every ω ∈ Ω, we have∫

Ω

dµ(ω′)f(ω′) = lim
n→∞

1
|Λn|

∫
Λn

dλ(g)f(Tgω),

where (Λn) is a Følner sequence in G.

Applying this to our situation, we get for all f ∈ C(Ω):∫
fdµ = lim

n→∞

1
|Λn|

∫
Λn

ddxf(T − x),

for µ-almost all T ∈ Ω. Since the same holds for any other ergodic translation
invariant probability measure ν on Ω, we see that

∫
fdµ =

∫
fdν for all f ∈

C(Ω), and therefore, since Ω is a compact metric space, we have:

Proposition 9.1.3 The measure µ defined in (9.4) is the unique ergodic, trans-
lation invariant probability measure on Ω. �

Next, we define a functional τµ on Cc(ΩoRd) by

τµ(f) :=
∫
dµ(T )f(T, 0),

which has the properties of a positive trace, i.e., τµ(f ∗ f∗) ≥ 0 and τµ(f ∗ g) =
τµ(g ∗ f), as follows from the translation invariance of µ. Note that τµ is not
bounded, so it cannot be extended to a trace on C∗(ΩoRd). However, restricting
τµ to the discrete case by noting [8] that the measure µ on Ω induces a (unique)
ergodic translation invariant probability measure on Ωpunc, also denoted by µ,
and recalling that C∗(Gpunc) has a unit I defined by I(T, x) := δ0,x, we see that
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τµ(I) = 1. So in the discrete case, the trace is normalized, and therefore, it can
be extended to C∗(Gpunc). In the same way, we can define a functional τ̃µ on
Cc(RT ) by

τ̃µ(g) :=
∫
dµ(T )g(T, T ),

and its discrete version extends to a trace on C∗(Rpunc).

Recall that a functional ω on a C*-algebra is faithful when every positive a ∈ A
for which ω(a) = 0 is equal to 0. We have the following easy proposition:

Proposition 9.1.4 τµ is faithful.

Proof: We have to show that if τµ(f ∗ f∗) = 0 for some f ∈ Cc(Ωo Rd), then
f ≡ 0. Suppose that τµ(f ∗ f∗) = 0. Then we get:

0 =
∫

(f ∗ f∗)(T, 0)dµ(T ) =
∫
f(T, x)f∗(T − x,−x)ddxdµ(T )

=
∫
|f(T, x)|2ddxdµ(T ), (9.5)

from which the proposition follows. �

Applying Birkhoff’s ergodic theorem to f ∈ Cc(ΩoRd), we get [7]:

τµ(f) = lim
n→∞

1
|Λn|

∫
Λn

ddxf(T − x, 0),

for µ-almost every T . By definition of πT (8.5) and of the operator trace Tr,
we can rewrite this as

τµ(f) = lim
n→∞

1
|Λn|

TrΛn(πT (f)), (9.6)

for µ-almost every T , where again TrΛn is the restriction of the operator trace
on L2(Rd) to L2(Λn). Thus, τµ can be seen as an operator trace per unit volume.

Remark 9.1.5 Note that in Chapter 6 the construction was the other way
round: starting from a trace τ that arises in a natural way from the AF-property
of the C*-algebra C∗red(R), a unique measure µ on the Cantor set K was con-
structed.

Note that the trace τµ defines a noncommutative integration on C∗(Ω o Rd)
[15, 8]. However, we will not elaborate on this, since only the noncommutative
topological structure is of interest to us.

Next, we return to our case of a covariant family {HT } of Schrödinger opera-
tors affiliated to the C*-algebra AT = C∗(Ω o Rd). Observe that the spectral
projection of HT onto values below E, denoted by χ(−∞,E](HT ), is a function
of the operator HT .
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Lemma 9.1.6 χ(−∞,E] is continuous and bounded on σ(HT ) if and only if
E /∈ σ(HT ), i.e., if E ∈ g for some gap g.

Proof: Obviously, χ(−∞,E] is bounded, since 0 ≤ χ(−∞,E](x) ≤ 1 for all x ∈ R.
To show continuity, observe that χ−1

(−∞,E]({1}) = {x ∈ R | x ≤ E} is always
closed in σ(HT ). However, if we look at the set

χ−1
(−∞,E]({0}) = {x ∈ R | x > E},

we see that it is closed in σ(HT ) if and only if E /∈ σ(HT ), so χ(−∞,E] is
continuous on σ(HT ) if and only if E /∈ σ(HT ). �

It follows that if E does not lie in the spectrum of HT , then χ−∞,E](HT ) can
be represented as πT (χH≤E) for some element χH≤E ∈ C∗(ΩoRd), since HT is
affiliated to this C*-algebra (cf. Definition 8.2.9). χH≤E is actually a projection
in C∗(ΩoRd). Now for f := χH≤E , note that (9.6) becomes

τµ(χH≤E) = lim
n→∞

1
|Λn|

TrΛn(χ(−∞,E](HT )), (9.7)

for µ-almost every T .

Definition 9.1.7 The covariant family {HT } affiliated to AT ) is said to satisfy
Shubin’s formula if for µ-almost all T ∈ Ω, we have

NT (E) = τµ{χH≤E}. (9.8)

The common value is denoted by N(E). Shubin’s formula was established in
[8] for continuous Schrödinger operators. We will only prove it for the discrete
case [7, 29].

Proposition 9.1.8 A covariant family {HT } of Schrödinger operators affiliated
to C∗(Rpunc) satisfies Shubin’s formula (9.8).

Proof: Recall that in the discrete case HT acts on the Hilbert space `2(T punc)
by

HTψ(x) =
∑

x′∈Tpunc
HT (x, x′)ψ(x′),

where HT (x, x′) 6= 0 only for the punctures x′ in a finite patch around x.
Combining (9.3) with (9.7), we see that an operator H satisfies Shubin’s formula
if we have

lim
n→∞

1
|Λn|

TrΛn(χ(−∞,E](HT,Λn)− χ(−∞,E](HT )) = 0,

for µ-almost all T ∈ Ωpunc. In this case, |Λn| denotes the number of punctures
in the smallest patch Pn ⊂ T that covers Λn. In what follows, we will always
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denote the smallest patch that covers Λ ⊂ Rd by PΛ. In particular, P puncΛ will
denote the set of punctures in T punc ∩ Λ.

Note that if E lies in a gap, χ(−∞,E] is continuous on the spectrum of HT , so
by the Stone-Weierstrass theorem (see for example [41]), it can be uniformly
approximated by polynomials. By linearity of the trace, it follows that we have
to show that

lim
n→∞

1
|Λn|

Tr(χΛnH
k
T − (χΛnHT )k) = 0, (9.9)

for all k and for µ-almost every T ∈ Ωpunc, where χΛn is the characteristic
function of Λn. Note that we have replaced TrΛn(·) by Tr(χΛn ·), which is of
course the same. Omitting subscripts n and T when they are not necessary, we
have

χΛH
k − (χΛH)k = χΛH(1− χΛ)Hk−1 + χΛH(χΛH

k−1 − (χLambdaH)k−1),

and applying the same to the second part of the right hand side repeatedly, we
finally get

χΛH
k − (χΛH)k =

k−1∑
j=1

(χΛH)j(1− χΛ)Hk−j .

Since we have
1
|Λ|
|Tr((χΛH)j(1−χΛ)Hk−j)| ≤ 1

|Λ|
Tr(χΛ)‖H(χΛH)k−1(1−χΛ)Hk−j‖ ≤ ‖H‖k,

it follows that the map H 7→ limn→∞
1
|Λn|Tr(χΛnH

k− (χΛnH)k) is continuous,
which means that HT can be approximated by πT (h), with h ∈ Cc(Rpunc). So
we may assume that HT is the image under πT of some h ∈ Cc(Rpunc). Since h
has compact support, the constant C defined by

C := max
x∈Tpunc

]{x′ ∈ T punc | HT (x, x′) 6= 0}

is finite. Then we get

Tr
(

(χΛHT )j(1− χΛ)Hk−j
T

)
≤ C

∣∣∣ ∑
x∈PpuncΛ

∑
x′∈Ppunc

Rd\Λ

Hj
T (x, x′)Hk−j

T (x′, x)
∣∣∣

≤ C2|∂Λ| max
x,x′∈Tpunc

|Hj
T (x, x′)||Hk−j

T (x′, x)|,

for µ-almost all T , where |∂Λ| denotes the number of tiles that lie on the bound-
ary ∂Λ = Λ∩Rd/Λ of Λ. Note that if necessary we could actually get a tighter
bound. Finally, we get for µ-almost every T :∣∣∣ lim

n→∞

1
|Λn|

Tr(χΛnH
k
T − (χΛnHT )k)

∣∣∣
≤ lim

n→∞

|∂Λn|
|Λn|

C2
k−1∑
j=1

max
x,x′∈Tpunc

|Hj
T (x, x′)||Hk−j

T (x′, x)|

= 0,
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which follows from the fact that {Λn} is a Følner sequence (since this means
that limn→∞

∂Λn|
|Λn| ). Thus, we have proven (9.9). �

9.2 K-theoretic gap labelling

Shubin’s formula implies that

σ(HT ) = σ(H) for µ− almost all T ∈ Ω,

since the spectrum of H can be seen as the set of ”growing points” of N(E),
i.e.,

σ(H) = {E ∈ R | N(E + ε)−N(E − ε) 6= 0 ∀ε > 0}.

This claim follows from the fact that, by faithfulness of τµ,

τµ (χ(H ≤ E + ε)− χ(H ≤ E − ε)) > 0

if and only if the spectral projections χ(H ≤ E + ε) and χ(H ≤ E − ε) are
different from each other, which is the case if and only if E ∈ σ(H). Thus we
see that the IDS completely determines the spectrum. By unitary invariance of
the spectrum, we already had

σ(HT ) = σ(HT+x)

for every x ∈ Rd, from which it followed that σ(HT ) and NT are constant on a
dense subset T +Rd of Ω. Using the fact that the metric structure, the topology
and the measurable sets are, by construction, all compatible with each other,
we have

µ{T ′ ∈ Ω | d(T, T ′) = 1} = 0.

Figure 9.1: The integrated density of states is constant on gaps in the spectrum

Since the IDS is constant on gaps g in the spectrum (see Figure 9.1), the value
of the IDS on gaps can serve as a labelling of these gaps. Combining this with
Shubin’s formula and the fact that χH≤E is a projection in Apunc (or in AT in the
continuous case), it follows that the set of gap labels is a subset of τµ(P1(Apunc)),
where P1(Apunc) denotes the set of projections in Apunc = C∗(Rpunc). Of
course, different values of E in a gap g give the same value of the IDS, and this
is mathematically unsatisfactory. However, we can associate a projection P (g)
to a gap by putting

P (g) := χH≤E for some E ∈ g.
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Now the important thing is that a trace is invariant under unitary transfor-
mations, which follows directly from the fact that τµ(ab) = τµ(ba). Thus, τµ
induces a trace τµ∗ on the set of equivalence classes of projections under unitary
transformations. This set is of course just the K0-group of C∗(Rpunc), so we
have a more canonical form of Shubin’s formula on gaps, which can be stated
as

N(g) = τµ∗[P (g)].

In particular, using the fact that Apunc is separable, and using τµ(I) = 1, where
I is the unit in Apunc, and noting that for the gaps at −∞ and +∞ we have
[P (g−∞)] = [0] and [P (g∞] = [I], respectively, we can state:

Proposition 9.2.1 The IDS on gaps takes values in τµ∗(K0(Apunc)) ∩ [0, 1],
which is a countable subset of R. �

Since τµ∗ transfers the order of the ordered K0-group to the natural order on
R, we see in particular that if g1 < g2, then N(g1) < N(g2), just as required.

In the continuous case, things are more complicated, because C∗(RT ) has no
unit. However, recall that in a non-unital C*-algebra A, unitary equivalence of
projections can be replaced by Murray-von Neumann equivalence, i.e.

p
MvN∼ q ⇔ ∃v ∈ A : p = v∗v, q = vv∗.

The K0-group of A is then defined as the kernel of the projection of the K0-group
of the unitization of A onto K0(C), i.e.

K0(A) := Ker(K0(π)),

where π : Ã → C ∼= Ã/A is the obvious projection, and K0(π) is the induced
map. For more details, see Section 5.2. Actually, since the K0-groups of AT
and Apunc are isomorphic by Corollary 8.3.9, we have

Proposition 9.2.2 τµ∗(K0(AT )) ' τµ∗(K0(Apunc)). �

So the tight binding approximation does not affect the gap labelling, and in
particular, we can compute the gap labels using discrete models, which are
often simpler than their continuous counterparts. Summarizing, we have (see
e.g. [9]):

Theorem 9.2.3 Let {HT } be a covariant family of Schrödinger operators af-
filiated to AT (or Apunc, in the tight binding approximation). Then we have the
following:

1. For µ-almost all T , the value of the IDS on gaps g in the spectrum of HT

is given by
N(g) = τµ∗[P (g)],
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where P (g) is the spectral projection onto energies smaller than E, with
E ∈ g.

2. N(g) ∈ τµ∗(K0(AT )) ∩ [0, 1] gives a labelling of the gaps in the spectrum,
which is invariant under norm-continuous perturbations, as long as the
gaps do not close.

Proof: The first item is clear from the above. The fact that the gap labelling
is invariant under norm perturbations, follows from the fact that if two pro-
jections p and q obey ‖p − q‖ < 1, they belong to the same equivalence class,
cf. Proposition 5.2.2. Conversely, if two projections are Murray-von Neumann
equivalent, they are homotopic in P∞(AT ), i.e. there exists a norm-continuous
path of projections between them, cf. Corollary 5.2.4. �

A few remarks are in order. First of all, if we would purely be interested in
labelling the gaps in the spectrum of H, we wouldn’t need the trace τµ, because
the elements of K0(Apunc) can already serve as gap labels. However, Shubin’s
formula gives a physical interpretation to the gap labels in τµ∗(K0(Apunc)) as
the value of the integrated density of states on the gaps.

Secondly, it should be noted that computing the K0-group of our C*-algebra
and its trace does not automatically yield the set of gap labels; if we denote the
set of gap labels of H by gap(H), in general, τµ∗(K0(Apunc)) will be larger than
gap(H). This is due to the fact that not all projections in Apunc are necessarily
spectral projections of H. In particular, we cannot use the additivity rules of
the K0-group to say that if N(g1) and N(g2) are the values of the IDS on the
gaps g1 and g2 respectively, that there is a third gap g3 ∈ gap(H) such that

N(g3) = N(g1) +N(g2).

However, we can use the knowledge about the set of possible gap labels to de-
rive qualitative results on the spectrum of the Hamiltonian, for example whether
it is singular continuous or absolutely continuous. In this way, we can derive
electronic properties of quasicrystals, for instance whether it is a good or a
bad conductor (in general, singular continuous spectrum leads to lower con-
ductivity than absolute continuous (band) spectrum). The fact that in general
τµ∗(K0(Apunc)) may be larger than the set of gap labels, can be rephrased by
saying that ”not all gaps may be open”, so we have

Definition 9.2.4 We say that all gaps are open if

τµ∗(K0(Apunc)) ∩ [0, 1] = gap(H).

In the next section, we will investigate a one-dimensional example of a quasiperi-
odic Hamiltonian for which it has been conjectured that indeed all gaps are
open.
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To conclude this section, let us make a few remarks about the actual computa-
tion of the K-groups. Useful tools to compute the K-groups are Bott periodicity,
the Connes-Thom isomorphism and the Pimsner-Voiculescu exact sequence (see
for instance [9, 13]). Another useful tool is the following gap labelling theorem,
a proof of which can be found in [10]:

Theorem 9.2.5 Denote the functional associated to the measure µ via Riesz’
representation theorem by µ̃, and let C(Ωpunc,Z) denote the continuous integer-
valued functions on Ωpunc. Then we have:

τµ∗(K0(Apunc)) = µ̃(C(Ωpunc,Z).

We will only indicate why µ̃(C(Ωpunc)) is a subset of τµ∗(K0(Apunc)), referring
to [10] for the converse inclusion, which is more difficult. Recall that the sub-
algebra of Apunc generated by the position operators e[P, t, t] is isomorphic to
C(Ωpunc). Now, any f ∈ C(Ωpunc,Z) can be written as f =

∑
i niχi, where

ni ∈ Z and χi = e[P, ti, ti] is the characteristic function of the open and closed
subset U(Pi, ti) of Ωpunc. Identifying Ωpunc with the diagonal in Rpunc, we have

µ̃(f) =
∫
fdµ =

∑
i

niτµ(χi) =
∑
i

niτµ∗[χi].

Thus, the inclusion of C(Ωpunc) into Apunc yields the inclusion

µ̃ (C(Ωpunc,Z)) ⊆ τµ∗(K0(Apunc)).

For the converse inclusion, we refer to [10, 12].

Since µ can be seen as a measure for the frequency of occurrence of patches P in
a tiling, the above theorem states that the set of possible gap labels is uniquely
determined by these frequencies.

9.3 An example: the Almost Mathieu operator

A well-known example of a quasiperiodic discrete Hamiltonian in one dimension
is the Almost Mathieu operator (abbreviated AM-operator) Hα,θ,λ, defined
on `2(Z) by

Hα,θ,λψ(n) := ψ(n+ 1) + ψ(n− 1) + 2λ cos(2παn+ θ)ψ(n), (9.10)

where n ∈ Z, ψ ∈ `2(Z) and α, θ and λ are real parameters. This model has
been extensively studied (see [20, 27, 36, 39, 50] and many others). It is clear
that for α ∈ Q, say α = p

q (with p and q relative prime), the potential

V (n) = 2λ cos(2π
p

q
n+ θ),
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is periodic with period q. Therefore, the spectrum of Hα,θ,λ is absolutely con-
tinuous for all α ∈ Q, exhibiting the well-known band structure, with decreas-
ing bandwidth for increasing q. However, for α /∈ Q, (9.10) can serve as a
model for electronic motion in a one dimensional quasicrystal. For example,
if α = τ := 1+

√
5

2 , (9.10) describes the motion of an electron on a Fibonacci
chain. Although the model looks very simple, it is still not totally clear what the
nature of the spectrum of Hα,θ,λ is for irrational α. During a talk in 1981, M.
Kac offered ten Martini drinks to anybody who could prove or disprove that the
AM-operator has Cantor-like spectrum (possibly with positive Lebesgue mea-
sure) for all irrational α. Nowadays, this is called the Ten Martini Problem. In
fact, B. Simon conjectured a stronger version (the Strong (or Dry) Ten Martini
Problem), which stated that ”all gaps are open” (see [50, 51, 52] for reviews).
This can be reformulated as follows, using the ”irrational rotation algebra” Aα
to which Hα,θ,λ is affiliated:

Conjecture 9.3.1 For α /∈ Q, we have:

gap(Hα,θ,λ) = τ∗(K0(Aα)).

This conjecture has actually been proved for various values of α and λ. In this
section, we will review some important results concerning the spectrum of the
AM-operator.

Let us first define the C*-algebra Hα,θ,λ is affiliated to. For any α, we can define
the rotation algebra Aα (see e.g. [14, 15, 21]) as the C*-algebra generated by
a unit I and two elements u, v in the following way: let u and v be subject to
the commutation relation

uv = e2πiαvu.

Considering the algebra Pα of all Laurent polynomials in u and v, with unique
involution ∗ such that u∗ = u−1 and v∗ = v−1, we can define representations π
as *-homomorphisms from Pα to B(H), and define (as usual) a norm on Pα by

‖p‖ := sup
π
‖π(p)‖,

where p ∈ Pα. Then the completion of Pα in this norm is a C*-algebra, and
this will be our Rotation Algebra Aα.

Next, we will make contact to our general formulation in terms of the noncom-
mutative C*-algebra of the hull, showing that this C*-algebra is isomorphic to
the above defined rotation algebra Aα. Note that in our present case, the hull
is S1: indeed, for fixed λ 6= 0 and α, we can view the set of possible θ’s as the
hull, and by periodicity of the cosine in (9.10), θ can be limited to the interval
[0, 2π), with periodic boundary conditions, which is just the circle S1 or T. We
define an action α̃ of Z on our hull S1 by

α̃m(θ) := 2παm+ θ.
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Note that α̃ can be seen as a rotation operator. Then with this action, S1
oα Z

is a transformation groupoid, with product and inverse given by

(θ,m)(α̃m(θ), n) = (θ,m+ n); (θ,m)−1 = (α̃m(θ),−m),

and we can form the C*-algebra C∗(S1
oαZ) in the usual way. Now if we define

ũ, ṽ ∈ C∗(S1
oα Z) by

ũ(θ,m) := δm,1; ṽ(θ,m) := ei(παm+θ),

we see that this is consistent with the involution. Moreover, a simple computa-
tion shows that

ũ ∗ ṽ = e2πiαṽ ∗ ũ,

where ∗ denotes the convolution product, and one can show [21] that these
elements actually generate C∗(S1

oα Z), so that we can identify C∗(S1
oα Z)

with Aα. Of course, if we define an equivalence relation Rα by

Rα := {(θ, θ′) | ∃n ∈ Z : θ′ = αn(θ)},

the resulting C*-algebra C∗(Rα) is isomorphic to Aα as well. It is easy to see
that C∗(S1

oαZ) is simple if and only if the action of α̃ is minimal, which is the
case if and only if α is irrational. On the other hand, if α = p/q is rational, the
C*-algebra Ap/q is isomorphic to C(T2)⊗Mq(C) and has center C(T2), where
T

2 denotes the 2-torus [21].

Now, define for all θ ∈ S1 the operators U and Vθ on `2(Z) by

Uψ(n) := ψ(n+ 1); Vθψ(n) := ei(2παn+θ)ψ(n).

Then a simple computation, using cosx = 1
2 (eix + e−ix), shows that the AM

operator can be written as

Hα,θ,λ = U + U∗ + λ(Vθ + V ∗θ ).

Now note that Aα can be represented on `2(Z) by defining representations πθ,
such that πθ(u) = U and πθ(v) = Vθ for all θ ∈ S1. We actually have

πθ(uv)ψ(n) = UVθψ(n) = V ψ(n+ 1) = ei(2πα(n+1)+θ)ψ(n+ 1)
= ei(2πα(n+1)+θ)Uψ(n) = e2πiαVθUψ(n) = e2πiαπθ(vu)ψ(n),

so every πθ is well defined, and it can easily be extended to a *-homomorphism
from Aα to B(`2(Z)). Note that since the Almost Mathieu operator Hα,θ,λ is a
linear combination of U, U∗, Vθ and V ∗θ , it is affiliated to Aα.

In the irrational case, all representations πθ are faithful and hence isometric, so
that the spectrum of Hα,θ,λ is equal to the spectrum of the element hλ ∈ Aα,
defined by

hλ := u+ u∗ + λ(v + v∗).
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A straightforward computation shows that the representation πθ of Aθ on `2(Z)
is precisely the reduced representation of C∗(S1

oαZ), where we have identified
each fiber R−1(θ) of the groupoid S1

oα Z with Z, as usual. For α and λ fixed,
we can explicitly check the covariance condition for Hθ := Hα,θ,λ, yielding

T (n)HθT (n)−1 = H2παn+θ = Hαn(θ),

as expected, and likewise for the reduced representations πθ.

Since the covariant family {Hθ}θ∈S1 is affiliated to the irrational rotation algebra
Aα ' C∗(S1

oα Z), by Proposition 9.2.1 we have

gap(Hα,θ,λ) ⊆ τ∗(K0(Aα)), (9.11)

where τ∗ comes from the trace τ on Aα, uniquely defined by its value on mono-
mials ukvl in the following way: note that since we require τ(ab) = τ(ba) for all
a, b ∈ Aα, we must have

τ(ukvl) = 0,

for all k, l ∈ Z, if k and l are not equal to 0. With τ(I) = 1, we get for any
element

∑
k,l aklu

kvl ∈ Pα, where akl ∈ C for every k, l ∈ Z:

τ(
∑
k,l

aklu
kvl) = a00.

Actually, the normalized Lebesgue measure plays the role of the unique ergodic
translation invariant probability measure on S1, and τ can be related to this
measure in the same way as usual [21]. Now the main question (Conjecture
9.3.1) is whether the inclusion in (9.11) can be replaced by an equality. But
first, let us compute τ∗(K0(Aα)).

Proposition 9.3.2 For α /∈ Q, there is an isomorphism between τ∗(K0(Aα))
and (Z+ αZ) ∩ [0, 1].

Sketch of the proof : [21] First, observe that we may take 0 < α < 1. Secondly,
observe that for any nonzero m ∈ Z, the C*-algebra generated by um and v is a
subalgebra of Aα that is isomorphic to Amα, due to the commutation relation

vum = e2πimαumv.

One can define a Rieffel projection p ∈ Aα by [45]

p := hv−1 + f + gv,

where f, g, h ∈ C(S1). The condition p = p∗ = p2 imposes certain conditions on
f, g and h, and one can show that τ(p) = α [21, 45]. Likewise, one can show that
the trace of the Rieffel projection pm ∈ Amα is given by τ(pm) = {mα}, where
{·} denotes the fractional part. Since Amα ⊆ Aα for every nonzero m ∈ Z, and
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since τ(0) = 0 and τ(I) = 1, we see that (Z + αZ) ∩ [0, 1] is contained in the
range of τ on the projections in Aα. Hence, we have the inclusion

(Z+ αZ) ∩ [0, 1] ⊆ τ∗(K0(Aα)).

To obtain the converse inclusion, we embed Aα into an AF-algebra Bα in the
following way: recall that every irrational number α > 0 has a continued fraction
expansion

α = r0 +
1

r1 + 1
r2+ 1

r3+...

,

where ri ∈ N, or alternatively, α = limm→∞
pm
qm

, where

pm
qm

= r0 +
1

r1 + 1

. . .+ 1
rm

.

Note that if rm = 1 for all m, α is equal to the golden number τ . In general,
pm and qm can be shown to obey the recurrence relations

pm = rmpm−1 + pm−2; qm = rmqm−1 + qm−2,

with initial conditions p0 = r0, q0 = 1, p1 = r1r0 + 1 and q1 = r1. In this way
we obtain an increasing sequence of finite-dimensional C*-algebras {(Bm, ϕm)}
defined by

Bm := Mqm(C)⊕Mqm−1(C),

ϕm : Bm−1 → Bm; a⊕ b 7→ wm(a⊕ · · · ⊕ a⊕ b)w∗m ⊕ a,

where (a ⊕ · · · ⊕ a) denotes rm copies of a ∈ Mqm(C), and wm ∈ Mqm(C) is a
suitable unitary matrix. Then Bα is defined as the inductive limit of the Bm’s.
It can be shown that in each Mqm(C), there are matrices Rm and Sm for which

RmSm = e2πipm/qmSmRm.

Next, define vm := Rm⊕Rm−1 and um := Sm⊕Sm−1. Then one can show that
the unitary matrices wm can be chosen in such a way that the limits v and u of
vm and um respectively, obey

vu = limm→∞e
2πipm/qmuv = e2πiαuv,

so that the C*-subalgebra of Bα generated by u and v is isomorphic to Aα [21].
The construction of the AF-algebra Bα is a generalization of the construction of
the C*-algebra of Penrose tilings C∗red(R) in Chapter 6, where α = τ := 1+

√
5

2 ,
and rm = 1 for every m. Likewise, the image of the induced trace τ∗ on K0(Bα)
is (Z+ αZ) ∩ [0, 1] (cf. Proposition 6.4.1), which proves the converse inclusion.
This concludes the proof. �
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Corollary 9.3.3 For α /∈ Q and λ 6= 0, the IDS on gaps in the spectrum of the
AM-operator Hθ := Hα,θ,λ takes values in

(Z+ αZ) ∩ [0, 1],

for almost all θ ∈ S1.

Note that if gap(Hθ) is in fact equal to (Z + αZ) ∩ [0, 1] (that is, all gaps
are open), the spectrum is Cantor-like; in particular, it is nowhere dense and
it has no isolated points. Thus, the statement that all gaps are open auto-
matically implies the fact that the spectrum is Cantor-like, and is therefore a
stronger statement than the Ten Martini Problem, justifying the name ”Strong
Ten Martini Problem”.

Now let’s give some known results about the nature of the spectrum of the
AM-operator for various values of λ (see e.g. [20, 27, 51]). Since most proofs
use methods different from our K-theoretic approach (for example Lyapunov
exponents and Aubry-André duality), we will not discuss these proofs. For
Lebesgue-almost every α and θ, we have

1. If |λ| < 1 the spectrum of Hα,θ,λ is purely absolutely continuous.

2. If |λ| = 1, the spectrum is purely singular continuous.

3. If |λ| > 1, the spectrum is pure point.

These results were obtained during the last two decades. In most cases, ”almost
every α” means that α satisfies a so-called Diophantine equation, which
means there exist constants c, r > 0 such that for all n 6= 0,

| sin(2πnα)| > c

|n|r
.

Note that by increasing the coupling constant λ, one observes a transition from
absolutely continuous spectrum (|λ| < 1 via singular continuous spectrum (λ =
1) to pure point spectrum (λ > 1). Now recall that a.c. spectrum corresponds to
extended wave functions, whereas p.p. spectrum corresponds to localized wave
functions, with s.c. spectrum in between, with critical wave functions (i.e.,
neither extended nor exponentially localized). Therefore, we see that increasing
the potential (via the coupling constant λ) gives a transition where extended
electronic wave functions become localized. This transition can be seen as a
metal-insulator transition [27].

The latest result on the question whether the spectrum is Cantor-like (possibly
with positive Lebesgue measure) has been obtained by Puig [39]. He showed
that for Diophantine α, the spectrum is Cantor-like for |λ| 6= 0, 1. This solves
the Ten Martini Problem for almost every α. Moreover, he showed that for α
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Diophantine, all spectral gaps are open for small enough and large enough λ,
solving the Strong Ten Martini Problem (Conjecture 9.3.1) for these values.

We conclude this section with some remarks. First of all, it should be noted
that although the AM-operator describes a simple one-dimensional quasiperi-
odic model, it is already very difficult to obtain exact results about its spectrum.
However, this model shows that singular continuous spectrum may in fact ap-
pear in physical situations. Moreover, it gives a hint that Cantor-like spectrum
might be generic for quasiperiodic Hamiltonians. This is in agreement with nu-
merical computations on periodic approximants of quasiperiodic tilings, showing
a ”spiky” density of states (cf. Section 7.3). However, these spikes have so far
not been observed in experiments [54], and it may well be possible that the
spikiness of the density of states is limited to 1- and 2-dimensional systems.
Moreover, the spikiness observed in numerical computations could be an arti-
fact of certain assumptions [58, 57]. To the best knowledge of the author, this
is still an open problem.

Secondly, note that in order to determine whether indeed all elements of the
countable set τ∗(K0(Aα)) serve as gap labels, other methods than K-theoretic
or operator-algebraic ones are necessary. It appears that it is not possible to de-
termine which elements actually serve as gap labels using only the K-theoretic
data. However, Shubin has derived an operator-algebraic condition for all gaps
to be open for the AM-operator [50]. It remains an open question whether a
similar condition can be formulated for general quasiperiodic Schrödinger oper-
ators.
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Chapter 10

Conclusion

In this thesis, we have described quasicrystals, which form a new state of long-
range order between periodic crystals and amorphous metals. Since Bloch the-
ory does not apply to aperiodic media, a different approach has to be found
to handle electronic motion in quasicrystals. Following the work of Bellissard,
Connes, Kellendonk and others, we have used K-theory to obtain results about
the spectrum of quasiperiodic one-electron Hamiltonians.

To this end, we have generalized ordinary topology to a noncommutative version
of it, using C*-algebras as a basic tool. Noncommutative topology turned out
to be useful in describing non-Hausdorff spaces, and the groupoid C*-algebra of
equivalence relations was introduced for this purpose. We have shown that K-
theory, consisting of abelian groups K0 and K1, is a good topological invariant to
characterize non-Hausdorff spaces, and we have indicated why other invariants
have been abandoned.

We have reviewed an illuminating example of a non-Hausdorff space constructed
by Connes, namely the space of Penrose tilings, and in an analogous way, the
noncommutative C*-algebra of the hull, which is basically the space of all trans-
lates of a certain tiling, was obtained, following the work of Kellendonk. We
have shown that for a (quasi-)crystal that is modeled by this tiling, the C*-
algebra of the hull can be seen as the C*-algebra of observables, both in the
continuous and in the discrete case. Surprisingly, we saw that although this
C*-algebra does not depend on the precise shape of the potential, but only on
the (quasi-)periodicity of the tiling, it can nevertheless be used to obtain results
about the spectrum of the Hamiltonian. For this purpose, the K-theory of the
C*-algebra of observables was used to obtain a set of possible labels of the gaps
in the spectrum, namely the K0-group, and via Shubin’s formula, the values of
a trace on this K0-group were shown to be equal to the values of the integrated
density of states on the gaps.
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An important problem is that the K0-group is in general larger than the set of
actual gaps, and it remains unclear how one can show which elements actually
serve as gap labels. In particular, we cannot use the group laws of the K0-
group to obtain additivity properties of gap labels. Possibly, more information
about the precise form of the potential is needed to derive which elements of the
K0-group are actual gap labels, but this is still an open problem. Therefore, it
remains unclear whether the K-theoretic gap labelling may be used in the future
to obtain quantitative results about the spectrum of quasiperiodic Hamiltonians.
However, the gap labelling can in fact be used to obtain qualitative results about
the nature of the spectrum, for example whether it is absolutely continuous,
singular continuous or pure point.

We have studied the one-dimensional example of the Almost Mathieu operator,
and we have seen that for almost all values of the parameters, the spectrum
is Cantor-like. The coupling constant λ appears to be the decisive parameter
for the spectrum to be absolutely continuous, singular continuous or pure point.
The appearance of purely singular continuous spectrum is an important example
of the fact that s.c. spectrum can in fact be physical, in contrast to what people
believed until the eighties.

The Cantor-like nature of the spectrum of the AM-operator has lead people to
conjecture that Cantor-like spectrum might be generic for quasiperiodic Hamil-
tonians. This is also supported by numerical computations for periodic approx-
imants of quasiperiodic tilings, showing a very spiky density of states. However,
as far as the author knows, this spikiness has not (yet) been observed in exper-
iments. To solve these matters is still an open question.

In conclusion, the K-theoretic gap labelling may serve as a solid theoretical
basis for the description of electronic transport properties of quasicrystals, and
noncommutative topology may be used as a building block to generalize Bloch
theory from periodic media to aperiodic media. However, it is unclear whether
this formulation may be used in the future to obtain any quantitative results.
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