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THREE-MANIFOLDS, FOLIATIONS AND CIRCLES, I

PRELIMINARY VERSION

WILLIAM P. THURSTON

Abstract. A manifold M slithers around a manifold N when the uni-
versal cover of M fibers over N so that deck transformations are bundle
automorphisms. Three-manifolds that slither around S1 are like a hy-
brid between three-manifolds that fiber over S1 and certain kinds of
Seifert-fibered three-manifolds. There are examples of non-Haken hy-
perbolic manifolds that slither around S1. It seems conceivable that
every hyperbolic 3-manifold slithers around S1, and it seems reason-
able that every hyperbolic three-manifold has a finite sheeted cover that
slithers around S1.

If M is a closed 3-manifold, then I. M slithers around the circle if
and only if it has a uniform foliation F , defined to be a foliation without
Reeb components such that in the universal cover any two leaves are a
uniformly bounded distance apart.

II. Every uniform foliation F has a transverse flow φt that is either
pseudo-Anosov, periodic, or reducible (admits a non-empty collection of
invariant incompressible tori and Klein bottles).

III. If M is hyperbolic and F is a uniform foliation of M , the stable
and unstable laminations for φt are quasi-geodesic. The leaves of F
extend continuously to give π1(M)-equivariant sphere-filling curves in

the sphere at infinity of M̃ .
IV. The skew R-covered Anosov foliations analyzed by Sérgio Fenley

[Fen94] slither around the circle. They correspond 1–1 to cocompact

extended convergence groups, which are subgroups Γ ⊂ ˜Homeo(S1) such

that T̃ /Γ is Hausdorff, where T is the set of counter-clockwise ordered
triples of distinct points on the circle. (Convergence groups are the

special case that Γ contains the kernel Z → ˜Homeo(S1) → Homeo(S1).)
Preview. Two or more further parts are projected in this series.

Part II will analyze the asymptotic geometry of leaves of taut foliations
of 3-manifolds and construct a universal circle-at-infinity that collates
the circles-at-infinity for all the leaves. Provided that M is atoroidal,
the action of π1(M) on this circle will be used to construct a genuine
essential lamination transverse to any taut foliation.

In a subsequent part, we plan to prove the geometric decomposition
conjecture for three-manifolds that slither around S1 by analyzing the
deformation theory of uniform ‘quasi-Fuchsian’ foliations of M×R whose
leaves have three-dimensional hyperbolic structures.
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1. Fiberings and Slitherings

Definition 1.1. One manifold M slithers around a second manifold N
when there is a fibration s : M̃ → N of some regular covering space
p : M̃ → M whose deck transformations are bundle automorphisms for
s. In other words, deck transformation take each fiber of s to a (possibly
different) fiber of s. This structure, determined by s, is a slithering.

The manifold M is the total space, and N is the base. The fibers of a
slithering are the fibers of s. The components of the images p(F ) in M of
the fibers are the leaves of the slithering, and they form a foliation F(s).

We could always use the universal cover of M for the covering space
M̃ , but it is sometimes convenient to construct examples in terms of other
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regular covering spaces. A fibration Mm → Nn qualifies as a slithering, but
there are many examples that are not of this form. To start,

Figure 1. This foliation of T 2 has two closed leaves; all
other leaves are homeomorphic to R, spiraling to the two
closed leaves at their two ends. Its universal cover can be
represented as the foliation of R2 by horizontal lines, where
the deck transformations are generated (for example) by
(x, y) 7−→ (x, y + 2π) and (x, y) 7−→ (x + 1, y + .5 sin(y)).
These transformations act as automorphisms of the fibration
R2 → S1 = R2/(R ⊕ 2πZ).

Example 1.2. The only closed 2-manifolds that can slither are the torus
and Klein bottle, which fiber over S1. However, these manifolds also have
slitherings that are not fiberings. For instance, figure 1 shows a foliation with
two closed leaves, where all other leaves are lines spiraling to the two closed
leaves in the two directions. The universal cover of T 2 can be represented
as R2 with the foliation by horizontal lines, where deck transformations can
be taken as the group generated by

φ(x, y) = (x+ 1, y + .5 sin(y)) ψ(x, y) = (x, y + 2π).

This group acts as automorphisms of the fibering over S1

R2 → R2/(R × 2πZ) = S1.

The particular fibering over S1 is part of the data, and is not determined
by the foliation (although in many examples, there is a unique simplest
choice.) One could, for example, use the fibering over the 2πk circle R2/(R×
2πkZ).

Example 1.3. Let Qn be a hyperbolic manifold or orbifold, and let TS(Qn)
be its tangent sphere bundle. Then TS(Hn) → TS(Qn) is a regular cover-
ing, and the map s : TS(Hn) → Sn−1

∞ that sends each tangent ray to its
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Figure 2. This is the universal
cover of the tangent circle bundle of
H2 (or any hyperbolic surface), with
a few randomly selected leaves of its
circle-at-infinity foliation. Each leaf is
rendered as an assemblage of slats, so
we can glimpse what’s behind. This
foliation is also called the stable fo-
liation for the geodesic flow. The
horizontal direction is the projective
disk model for H2, while the vertical
direction is the angle of a vector in
the plane (using ordinary E2 measure-
ment.) In these coordinates, one point
at infinity on each leaf blows up to a
vertical interval. The leaves are por-
tions of helicoids that the foliation has
cleverly stacked. Any projective auto-
morphism of the disk has a derivative
that when lifted to T̃ S(H2) preserves
this foliation. The unstable foliation
for the geodesic flow is obtained by ro-
tating this picture 180◦ about its ver-
tical axis.

endpoint at infinity is a fibration. The deck transformations act as bundle
automorphisms, so TS(Qn) slithers around Sn−1

∞ .
When n = 2, the restriction of the bundle TS(Q2) → Q2 to any geodesic

in Q2 is a torus, and the slithering of TS(Q2) around S1 induces a slithering
of this torus around S1 that is topologically equivalent to the first slithering
of the preceding example.

When Mm slithers around Nn, then the slithering lifts to a slithering
around Ñn. In particular, if the base is S1, then the universal cover of Mm

fibers over R. One can picture a long stretched-out image of M̃m, coiled
around and around the circle (figure 4.) The fibers of the fibration to S1

have infinitely many components. Deck transformations of M̃m → Mm

are periodic, but they probably do not move in a uniform way: in some
places the fibers squeeze closer together, while elsewhere they spread apart,
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Figure 3. This is the same foli-
ation of T̃S(H2) shown in figure 2,
but drawn with every leaf scaled
×.25 toward the point where its
geodesics are converging, in order
to bring out the helical relation-
ship of leaves to points on a circle
at infinity.

reminiscent of the slithering, undulating motion of a snake. A slithering
of a manifold around S1 has a strong dynamic element, stemming from
the hidden action of the fundamental group of S1. Slitherings are sneaky
structures that you wouldn’t be likely to see if you weren’t on watch for
them.

A foliated bundle is a fibration Fm−p →Mm → P p with a reduction to a
discrete structure group Homeoδ(F

m−p), that is, a foliation of dimension p
transverse to the fibers whose leaves project as covering spaces to P p. Any
such foliation, when pulled back to the universal cover P̃ p of the base, is a
product P̃ p×Fm−p. In other words, the leaves define a fibration over Fm−p,
so Mm slithers around Fm−p.

The base can also be an orbifold, and the same reasoning applies. There
is a well-developed theory started by Milnor ([Mil58]) and Wood ([Woo69]
concerning which circle bundles admit foliations transverse to the fibers
when the base is a 2-dimensional orbifold (see section 3.)

Here is another way to represent the data for a slithering, in a compact
form that does not mention M̃m. When Mm slithers around Nn, then
π1(M

m) acts as a group of homeomorphisms of Nn. There is a foliated
bundle Nn → En+m →Mm associated with this action, obtained by taking
M̃m×Nn modulo the diagonal action. The graph of the fibration M̃m → Nn

is invariant by the action of π1(M
m), so it descends to give a section Mm →
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Figure 4. A slither-
ing around S1 can be pic-
tured as giving a long,
coiled shape to the uni-
versal cover M̃ . The fun-
damental domains for the
action of deck transforma-
tions have projections to
S1 that are isomorphic,
but for a ‘typical’ slith-
ering no two fundamental
domains are in phase. The
leaves of the foliation of
M̃ group into families (a
few of them shown) that
are the fibers of the slither-
ing. Deck transformations
of M̃ move each family as a
unit but alter the spacing
between fibers. Nonethe-
less, the distance between
any two leaves is bounded
by a constant times the
number of turns of the coil
(2.5.)

En+m, transverse to the foliation of En+m, and inducing the foliation of
Mm.

For example, assuming M3 is compact, a fibration M3 → S1 is the same
thing as a section of the bundle M3 × S1 → M3 that is transverse to the
horizontal foliation by M3×θ associated with the trivial action. As a second
example, whenM3 is a foliated circle bundle, the fibration can be pulled back
to the total space, giving a foliated circle bundle together with a canonical
section.

Every slithering gives data of this form, and the data is sufficient to
reconstruct the slithering. What’s often not obvious from this type of data
is whether or not the map M̃m → Nn is actually a fibration; this depends
on the global structure of F(s).

For example, a slithering over R gives a codimension one foliation such
that the space of leaves of the universal cover is homeomorphic to R. How-
ever, not every such foliation is a slithering over R. For example, consider
R3 \ {0}, modulo the action of Z generated by X 7−→ 2X. The quotient is
S2 × S1. The foliation of R3 by horizontal planes restricted to a foliation of
the universal cover of S2 × S1 such that the space of leaves is R; however,
this map does not give a fibration over R. Furthermore, this foliation can be
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described as the foliation induced from a section of a foliated circle bundle
over S2×S1, the bundle whose fiber is the one-point compactification of the
space R of leaves in the universal cover.

Among three-manifolds, the example of S2 × S1 is exceptional. Here is a
fact from foliation theory:

Proposition 1.4. Let F be a codimension one foliation of an irreducible
three-manifold M . If the space of leaves of the foliation F̃ in the universal
cover M̃ is homeomorphic to R, then M̃ is homeomorphic to R3, in a way
that takes the foliation F̃ to the foliation of R3 by horizontal planes. In
other words, M slithers around R.

Much more is actually known: Palmeira [Pal78] showed that any foliation
of an open 3-manifold by planes is homeomorphic to the product of R with
a foliation of the plane (and similar results in higher dimensions). Poincaré
studied foliations (and vector fields) in the plane, and showed that every
leaf of a foliation is a properly embedded line. It is easy to deduce that
if the space of leaves of a foliation of the plane is homeomorphic to R,
then the leaves are fibers of a fibration. Haefliger classified all possible
foliations of R2 in terms of the space of leaves, which is a simply-connected
but non-Hausdorff 1-manifold, together with with certain additional order
information at branch points. For present purposes we do not need all this
theory.

Proposition 2.9 gives a sufficient condition that can often be used to check
whether a section of a foliated circle bundle induces a slithering.

2. Uniform foliations

We will now specialize to the case of main interest: a slithering s : M̃m →
S1 of a compact manifold Mm around S1. Note that when when ∂ Mm 6= ∅,
there is an induced slithering of ∂ Mm. The foliation F(s) is a codimension
one foliation transverse to ∂ Mm. In particular if m = 3 and M3 is oriented,
its boundary consists of tori.

Any codimension one foliation F admits a transverse one-dimensional
foliation τ defined by any line field transverse to F . The pair of foliations
gives a local Rm−1×R product structure for Mm. For any parametrized arc
α : [0, t] →Mm on a leaf of τ and any parametrized path p : [0, u] →Mm on
a leaf of F , you can ‘comb’ α along p for some distance through the leaves of
F . In other words, there is a unique extension α×p to a maximal monotone
subset H of a rectangle, satisfying

α× p : H ⊂ [0, t] × [0, u] →M

α× p
∣∣ [0, t] × 0 = α

α× p
∣∣ 0 × [0, u] = p

(
r1 ≤ r2 & s1 ≤ s2

)
=⇒

(
(r2, s2) ∈ H =⇒ (r1, s1) ∈ H

)
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where α×pmaps the two coordinate directions to leaves of the two foliations.
In general, H is an open set containing a neighborhood of the two original
sides, but not the full rectangle, because the length of α might get longer and
longer, whipping out of control and failing to converge in the limit. When
the combing is interpreted as partially defining an action of the groupoid of
paths along leaves of F on arcs transverse to F , it is called the holonomy of
F .

Definition 2.1. The foliation F is regulated by τ if the holonomy of every
arc α exists for all time along any path. It is uniformly regulated by τ if the
lengths of the images of any arc α under the holonomy of F are bounded,
with a bound that depends only on α.

A foliation F is uniform if every closed transverse curve is non-trivial in
homotopy, and if for every pair of leaves L1 and L2 in the universal cover,
each is contained in a bounded neighborhood of the other.

Two uniform foliations F and G of a manifold M are uniformly equivalent
if for every pair of leaves L of F̃ and L′ of G̃, each is contained in a bounded
neighborhood of the other.

The prohibition on null-homotopic closed transversals in uniform folia-
tions eliminates examples that have a very different flavor, such as the Reeb
foliation (or any foliation) of S3. The condition implies that every leaf is
properly embedded in the universal cover, since a leaf in the universal cover
can never intersect a transverse arc more than once. In dimension 3, by the
celebrated work of Novikov [Nov65], a transversely oriented foliation on any
orientable manifold other than S2 × S1 satisfies this condition if and only if
it does not contain a Reeb component.

It follows from the definition that when F is regulated by τ , the lifts of F
and τ to the universal cover of Mm define a product structure. Conversely,
if the leaves of F and τ , lifted to the universal cover, are the factors in
a product structure, then τ regulates F . The product structure gives two
slitherings for Mm—a slithering of Mm around the universal cover of any
leaf of F , and another slithering around R (which is the universal covering
of a leaf of τ .) The two foliations complement each other, serving as flat
connections for the two slitherings.

When F is regulated by τ , then it has no null-homotopic closed transver-
sals; if the regulation is uniform, then F is uniform. If Mm is compact and
F is uniform, it easily follows that any τ that regulates F regulates it uni-
formly. This is not true for noncompact Mm (e.g. an easy counter-example
can be constructed on R × S1.)

In [Ghy87], Étienne Ghys gave an elegant description of a certain equiv-
alence relation on foliated circle bundles in terms of bounded cohomology,
and characterized equivalence classes in terms of blowing-up of leaves. This
equivalence relation is a special case of uniform equivalence of uniform fo-
liations. Ghys’ characterization of equivalence classes, upon translation to
the present context, generalizes to the following:
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Proposition 2.2. Let τ be a 1-dimensional foliation of a compact n-
manifold M , and let F and G be uniformly equivalent uniform foliations
of M that are regulated by τ .

If every leaf of F and of G is dense, then F is topologically equivalent to
G.

In any case, there is a third uniform foliation H that can be obtained from
each of F and G by blowing up at most a countable set of leaves, where each
blown-up leaf is replaced by a foliated I-bundle.

Proof. LetX and Y be the spaces of leaves of F̃ and G̃; each is homeomorphic
to R. Let I ⊂ X × Y be the closure of the set of pairs of leaves from the
two foliations that intersect each other. Each leaf of one foliation intersects
an interval’s worth of leaves in the other, since all leaves separate M̃ into
two components, so the intersection of I with any line x × Y or X × y is
a compact interval (possibly a single point.) Therefore, ∂ I is the union of
two embedded lines (but the lines might intersect each other.) Choose one

of the lines, call it l. Define a submanifold Ml ⊂ M̃×M̃ as a union of copies
of l, one copy for each leaf of τ̃—this makes sense because any leaf of τ̃ is
canonically homeomorphic to X and to Y .

Observe that Ml has the product structure of a leaf of F̃ × l; it is invariant
by the action of π1(M), so the quotient Ml/π1(M) is homeomorphic to M ,
and has a codimension one foliation H. Projection to the two factors shows
that H is a blow-up of F and G

If leaves of F and of G are dense, then the blowing up is trivial, since one
of the two projected images of any blown-up region in H is a proper open
invariant subset for one of F or G.

Given a codimension one foliation, if the induced foliation of its universal
cover has a product structure, the foliation is called R-covered. The follow-
ing example shows that not all R-covered foliations have uniform spacing of
leaves:

Example 2.3. Let φ : T 2 → T 2 be an Anosov diffeomorphism of the torus,
let Tφ be its mapping torus, let Fs be the stable foliation of Tφ, and Fuu be
the strong unstable manifold. The universal cover of Tφ is R × the universal
cover of T 2. The foliations Fuu and Fs can be represented in R3 by a family
of parallel lines and an orthogonal family of parallel planes, so Fuu regulates
Fs. However, Fs is not a uniform foliation.

However, this example seems to be fairly exceptional. It is hard to con-
struct R-covered foliations on ‘generic’ 3-manifolds. This is partly because
it is hard to know the space of leaves in the universal cover, but it seems
likely that there is also a fundamental obstruction.

Conjecture 2.4. A foliation of a closed hyperbolic 3-manifold is R-covered
if and only if it is a uniform foliation.
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Actually, it is remarkable that hyperbolic manifolds can have any kind of
R-covered foliations at all, since surfaces in hyperbolic space ‘want’ to sepa-
rate from each other and go off in different directions; most constructions of
foliations on hyperbolic manifolds yield foliations which are not R-covered.
Perhaps it shouldn’t be surprising if R-covered foliations on hyperbolic man-
ifolds turn out, as conjectured, to be quite special.

A rough rationale for this conjecture is that when a foliation of a hyper-
bolic manifold is not uniform, there tends to be recursively nested spreading
of the leaves that forces nearby leaves to limit to the sphere at infinity in
topologically separated ways. This is related to section 5, which constructs
a transverse pseudo-Anosov flow that controls the geometry of leaves of a
uniform foliation, and also to section 6, which analyzes how leaves of uniform
foliations limit to the sphere at infinity, in continuous, sphere-filling curves.
These structures seem likely to occur for any R-covered foliation, and they
give a fairly explicit conjectural picture of what R-covered foliations should
look like. See section 7 for a discussion of one class of R-covered foliations
that do turn out to be uniform.

Proposition 2.5. If s is a slithering of Mm around S1, then F(s) is a
uniform foliation.

Proof. We can define a rough measure of separation between two leaves for
a slithering s, as follows. Let s̃ : M̃m → R be a lift of s to a fibering over R,
where S1 = R/Z. The fibers of s̃ are connected. Let Lr and Lt be any two

fibers of s̃, that is, leaves in M̃ , where r, t ∈ R. The interval [r, t] wraps some
whole number of times around S1, with some bit left over. Define a function
z(Lr, Lt) to be the even number 2(t−r) when t−r is an integer, and the odd
number 2 ⌊t− r⌋+1 otherwise. With this definition, covering transformation

of M̃ → M preserve the function z on pairs of leaves. Similarly, we define
z(α) for any path α in M by taking any lift of α to M̃ , and evaluating z on
the leaves of its endpoints.

The z-diameter of M is the maximum, over all pairs of points x, y ∈ M ,
of the minimum value of z(α), where z(α) > 0, α(0) = x and α(1) = y.
Since M is compact, its z-diameter is some finite number k. Any arc α
in M such that z(α) > k must intersect every leaf of M . In fact, if every
leaf of F(s) is dense, then given x and y, the leaf through y intersects any
transverse arc starting at x, so the z-diameter of M is 1.

Let L and L′ be any two leaves in M̃ ; assume that z(L,L′) > 0. Let β be
any arc transverse to F(s) with z(β) = z(L,L′) + k + 2. We can subdivide
β = β1 ∗ β2, where z(β1) > k and z(β2) > z(L,L′).

For any point x̃ ∈ L ⊂ M̃ , we can project to M , connect the image point
x to the β1 by a path p on its leaf, then lift p and β back to an arc β̃ in M̃
that intersects L in β̃1. Since z(β2) > z(L,L′), it follows that β̃ intersects
both L and L′. The corresponding lift of β intersects L′, giving an upper
bound to the distance from L to L′.
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By symmetry, there is also a bound when z(L′, L) < 0—we can, for
instance, just reverse the orientation of R.

Corollary 2.6. The distance between any pair of leaves L and L′ in M̃m

is bounded above by some constant times |z(L,L′)|, and bounded below by
some constant times |z(L,L′)| − 1.

There is a construction going in the reverse direction, from uniform folia-
tions to slitherings, but it is not an exact converse. We will give a statement
expressed in terms of a foliation that is uniformly regulated by a line field.
The same proof can be applied to uniform foliations in general, but in this
setting the conclusion would be weaker. This is a variation of proposition
2.2, where one is constructing a uniform equivalence from a foliation to itself:

Theorem 2.7. Let F be a codimension-one foliation of Mm that is uni-
formly regulated by a 1-dimensional foliation τ .

If every leaf of F is dense then Mm is the foliation of a slithering of Mm

around S1.
In any case, there is a slithering s : M̃m → S1 of Mm, regulated by τ

such that F(s) is uniformly equivalent to F .

Proof. This could be proven using the same technique as for proposition 2.2,
but we’ll express the proof in somewhat different language instead.

α

β


Figure 5. In a uniform folia-
tion, we can start with any trans-
verse arc α, and look at all its
images under the holonomy of
the foliation. The limiting arc
β cannot expand any wider than
it already is. It acts like a pair
of calipers that can roughly but
consistently measure the trans-
verse distances between leaves,
since holonomy images of β can
never nest with each other.

First we analyze the case that every leaf of F is dense. Let α be any arc of
τ (see figure 5.) Choose a Riemannian metric on Mm (or just a path-metric
with reasonable properties, if the data isn’t very smooth). Let A be the
supremum of the length of holonomy images of α, and let β be any arc of
length A that is a limit of images of α.

Then no holomy image of β can have length greater than A, since every
holonomy image of β is a limit of images of α. In particular, no holonomy
image of β can properly contain β.

Let l be any flow line of τ in the universal cover, and consider all the lifts
of images of β to l. Since leaves are dense in Mn, images of both endpoints
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of β are dense. The map that takes each lower endpoint of an image of β
to its upper endpoint is a well-defined, monotone function from one dense
subset of l to another dense subset of l, with monotone inverse. Therefore, it
extends continuously to a homeomorphism f : l → l. This homeomorphism
commutes with the action of π1(M

n).

In other words, the projection of M̃n to l modulo f is a slithering around
S1.

If not every leaf of F is dense, we can still carry out most of the argument.
Begin with an arc α of τ with both endpoints on a minimal set K of F .
We obtain a limiting arc β that has endpoints on K and whose holonomy
images cannot nest with itself. If l is a flow line in the universal cover, then
we obtain a monotone function f with a monotone inverse from K ∩ l to
itself. Therefore f is a homeomorphism of K ∩ l.

The only possibilities for a proper minimal set such as K in a codimension
one foliation is that K is either a closed leaf, or an exceptional minimal set
(one where K ∩ l is a Cantor set.)

If K is a closed leaf L, then M actually fibers over S1 with fiber L
and structure group f ; the foliation by fibers of the fibration is uniformly
equivalent to F .

If K is an exceptional minimal set, then we can collapse each arc of
τ ∩M \ K to obtain a uniform foliation where every leaf is dense, which
therefore comes from a slithering.

In high dimensions, one can modify a slithering by taking the connected
sum with a simply-connected manifold on each leaf. Sometimes the result
is a foliation whose leaves are not homeomorphic: for instance, we could
start with a 5-manifold with a slithering similar to example 1.2, with a
transverse curve that does not intersect every leaf, then perform the leafwise
connected sum with CP2 along the curve. This indicates the importance of
the condition that the foliation of the universal cover is a fibering. It would
appear that a variation of this procedure could yield a manifold having a
uniform foliation, but no slithering at all.

Example 2.8. Consider a foliated trivial I-bundle over a closed manifold
with the top glued to the bottom by a diffeomorphism φ. If there is a
homeomorphism h : I → I that conjugates the holonomy of the bundle
to the holonomy composed with π∗1(φ), then the resulting foliation is the
foliation of a slithering over S1, where the structure map f for the slithering
is constructed by stringing together copies of h. Otherwise, if the holonomy
is not invariant at least by some power of π∗1(φ), the foliation is not the
foliation of a slithering.

This and other similar examples show that foliations constructed by blow-
ing up leaves of F(s) are not typically foliations of slitherings around S1,
although they still slither around R. The structure map Z, which comes
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from a generator of the group of deck transformation of R → S1, is a leaf-
preserving homeomorphism isotopic to the identity in M but usually not
isotopic to the identity on a leaf.

Blowing-up operations for slitherings can be naturally performed in terms
of the foliated circle bundle over M , rather than directly in terms of the
foliation.

2.1. Uniform regulation by Lorentz structures. Let F be a foliation
of a compact Riemannian manifold Mm that is uniformly regulated by a
line field τ . From theorem 2.7 we see that there is some constant A such
that given any two leaves L and L′ in M̃ , there is a sequence of intermediate
leaves L = L0, L1, . . . , Ln = L′ such that the distance between Li and Li+1 is
uniformly bounded by A. If τ ′ is another line field that makes a sufficiently
small angle with τ , the flow lines of τ and τ ′ stay reasonably close to each
other by the time they go a distance of A. In particular, we can guarantee
that in the universal cover, the flow lines of τ ′ hit Li+1 in a distance only
modestly greater than A after they hit Li, or in other words, F is also
uniformly regulated by τ ′.

Estimates for this kind of information can often be conveniently encoded
by a Lorentz structure. This can be done with a Lorentz metric, that is, a
quadratic form q of signature (n, 1), where τ is contained in the double cone
where q is negative. More generally, we could encode the information with
an open convex cone in the tangent space of each point (not necessarily
a quadratic cone). We’ll call this a Lorentz cone structure. A Lorentz
cone structure is transverse to F if every line contained within the cone
is transverse to F . We say that a foliation F is uniformly regulated by a
transverse Lorentz cone structure C if any two leaves L and L′ in M̃ can be
connected by a transverse arc within C, and there is a finite upper bound
K(L,L′) for the length of any arc within C connecting L to L′.

As a limiting case, we will say that a Lorentz cone structure C almost
uniformly regulates F if it is the increasing union of Lorentz cone structures
that uniformly regulate F . As an example, consider the foliation by fibers of
any actual fibration Mn → S1, with the Lorentz cone structure C which is
the union of the two open half-spaces that exclude the tangent spaces to the
fibers. Then C almost uniformly regulates the foliation. In other examples
just as in this one, it is often easiest to describe and think about a limiting
case that almost uniformly regulates F .

If M is a manifold with a Lorentz cone structure C and g : N → M is a
differentiable map, we’ll say that g is transverse to C if for each x ∈ N there
is a tangent vector V ∈ Tx(N) taken into C, dg(V ) ∈ C. In that case, for
each open convex half H of the double-cone C, the set of vectors that map to
H form a convex cone in Tx(N), describing a Lorentz cone structure g∗(C).
We can think of a foliation as a special case of Lorentz cone structure, where
each open convex half-cone is a half-space; this definition is a generalization
of the definition of a map transverse to a foliation, and of the pullback
foliation g∗(F).
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Figure 6. The tangent to this curve is a time-like curve
for the Lorentz structure of T1(M

2) for certain hyperbolic
structures on M2. The curve is homotopic to a fiber, since it
is the boundary of an immersed disk. An annulus realizing
the homotopy in T1(M

2) intersects itself in short double arcs
contained in the regions of self-intersection on the surface.
The image of the disk generates π1(M

2), from which one can
deduce that the complement of the curve is atoroidal. There
are hyperbolic metrics that make the disk round, so in the
universal cover view of figure 2 the curve is covered by a
countable set of helices, each interlinked with four neighbors.
The complement of this curve (or any other time-like curve)
slithers around S1, as does every cover of T1(M

2) branched
over timelike curves.

Proposition 2.9. If F is a codimension one foliation of M almost uni-
formly regulated by a Lorentz cone structure C, and if g : N → M is a
differentiable map transverse to C, then g∗F is a codimension one foliation
almost uniformly regulated by g∗C.

Proof. This follows from compactness considerations: if C ′ ⊂ g∗C is a
Lorentz cone structure whose half-cones have closure contained in g∗C, then
the images g(C ′) have closure contained in C.

It is worth observing that this proposition can be used to give a compact
geometric criterion for slitherings in terms of their associated foliated circle
bundles. Any foliated circle bundle can be almost uniformly regulated by a
Lorentz cone structure C, and in particular cases there are explicit construc-
tions using for example curvature estimates. Given a foliated circle bundle
E →M , a section S → E induces a slithering if it is transverse to some C.

Example 2.10. Let M2 be a hyperbolic surface, and F the circle at infinity
foliation of TS(M2) (example 1.3.) The tangent to a horocycle in H2 almost
traverses the circle at infinity, omitting only one point, where the horocycle
is tangent to S1

∞. Similarly, a curve in TS(M2) whose base point follows a



THREE-MANIFOLDS, FOLIATIONS AND CIRCLES I 15

horocycle in H2, lifted to a vector that makes a constant angle to the tangent
to the horocycle, but doesn’t point to the point of tangency on S1

∞, traverses
the entire circle except for that one point. All such curves together sweep
out the boundary of a Lorentz cone structure for TS(M2), where a curves
in TS(M2) are inside the cone if their vectors turn faster than their base
points move. One can think of time-like trajectories as dancers moving in
H2 in a way that all the scenery, near and far, in front and behind, appears
to rotate consistently in one direction. This Lorentz cone structure comes
from a Lorentz metric given by the Killing form on PSL(2,R). This Lie
group has the same complexification (PSL(2,C)) as SO(3), and its Lorentz
metric lifted to SL(2,R) has analytic continuation that agrees with the round
metric on S3.

• If Q2 is any closed hyperbolic orbifold and we remove any closed time-
like trajectory from TS(Q2), the resulting manifold still slithers around
S1. There are many possible closed time-like trajectories. For example,
the tangent to any curve with curvature greater than 1 is a time-like
trajectory; it gives an embedded curve in TS(Q2) as long as it is never
tangent to itself.

Every homotopy class of curves in Q2 has infinitely many regular
homotopy classes of immersions that can be arranged to satisfy this
condition. In fact, all but one of the Z’s worth of regular homotopy
classes can be made time-like. This can be done by transporting a
large-diameter circle immersed in Q2 so that its center traverses a
geodesic in the base. A pencil speeds around the circle drawing an
immersed curve as the circle moves. The pencil travels at constant
velocity in parallel-translated coordinates for the circle.

Furthermore, each time-like regular homotopy class is represented
by many distinct time-like knots. In the case of tangents of immersed
curves of curvature > 1, the knot type usually changes whenever a
tangency between the curve and itself occurs. For the moving circle
construction, infinitely many events of this type occur as the circle’s
radius tends to infinity.

• If M3 slithers around S1 and F(s) is almost uniformly regulated by
a Lorentz cone structure C, then any branched cover of M3 over any
time-like link also slithers around S1.

• We can remove any time-like curve from M3 as above, and replace it
by any 3-manifold with torus boundary that fibers over S1, to obtain
a new manifold that slithers around S1.

• Let τ ⊂ M3 be a 1-dimensional train-track embedded transversely to
C. Suppose that we have assigned integral weights to the branches
of τ in a way that satisfies the switch additivity condition. Then we
can remove a neighborhood of τ , and for any branch labeled g, insert
a surface of genus g ×[0, 1]. We have various choices of gluing maps
to glue the ends of the units together at each switch. These can be
arranged, if desired, so that the entire inserted assemblage has the same
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homology as the neighborhood of τ that was removed. The resulting
manifold slithers around S1, since it has a map to M3 that is transverse
to C.

In light of the fact that some Seifert fiber spaces are homology spheres,
and the fact that there are pseudo-Anosov maps of surfaces that induce
every possible symplectic automorphism of first homology, these construc-
tions are powerful enough to produce an atoroidal 3-manifold that slith-
ers around S1 with any desired homology type. However, these construc-
tions only scratch the surface, since in these examples the action of π1(M

3)
on S1 still factors through a Seifert fiber space. The moduli of represen-

tations π1(M
3) → ˜Homeo(S1) seems to be quite interesting—even when

limited to representations in restricted subgroups, such as ˜PSL(2,R) or or
PL-homeomorphisms—and deserves investigation beyond the present scope.

3. Groups, inequalities and topology

The Milnor-Wood inequality for foliated circle bundles and Stalling’s char-
acterization of fundamental groups of 3-manifolds that fiber over S1 demon-
strate an interplay of group theory, geometry and topology that is involved
in group actions on R and on S1, and in manifolds that slither around R

or S1. This section will recount some of the rudimentary theory of this
interaction.

One theme is that groups of periodic homeomorphisms have approximate
homomorphisms to R, despite the fact that they might not have any actual
homomorphisms. This theme can be expressed in several ways.

Proposition 3.1. Let a, b, c ∈ Homeo+(R) satisfy [a, c] = [b, c] = 1. Sup-
pose that for all x ∈ R, c(x) > x. Then, for all x ∈ R, c−2(x) < [a, b](x) <
c2(x).

See figure 7 for a picture of what this is all about.

Proof. For any x ∈ R there are integers k and l such that

ck(x) ≤ a(x) < ck+1(x)

cl(x) ≤ b(x) < cl+1(x)

Therefore

ck+l(x) ≤ a(cl(x)) ≤ a(b(x)) < a(cl+1(x)) < ck+l+2(x)

ck+l(x) ≤ b(ck(x)) ≤ b(a(x)) < b(ck+1(x)) < ck+l+2(x)

Let x′ = b(a(x)), so x = a−1b−1x′. Express the second line of inequalities in
terms of x′, then apply the first, to obtain:

c−k−l−2(x′) < a−1b−1(x′) ≤ c−k−l(x′)

c−2(x′) < aba−1b−1(x′) < c2(x′)
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α

β

α−1

β−1

Figure 7. This diagram shows
the commutator of two peri-
odic diffeomorphisms α and β of
R, where α and β both have
fixed points, but their commuta-
tor translates every point down-
ward, sometimes further than one
period. By adjusting α and β,
in the limit some points go down-
ward nearly two periods, showing
that proposition 3.1 is sharp.

Since x′ is arbitrary, this proves the proposition.

Proposition 3.2. If G ⊂ Homeo(R) acts without fixed points (that is, no
element of G except the identity fixes any point in R), then G is isomor-
phic as a group to a subgroup R(G) of the additive group of R, with action
obtained from R(G) by blowing up at most a countable set of orbits.

(See also 3.5.)

Proof. If G acts without fixed points, then G has a linear ordering where
for a, b ∈ G, a < b if for all x ∈ R, a(x) < b(x). This linear ordering is
bi-invariant, that is, if a < b then for all g ∈ G, ga < gb and ag < bg.

If there is a least element of G that is greater than 1, then G is cyclic,
and we are done.

Otherwise, given any element c ∈ G (we imagine c to be small), we can
compare the commutator of a and b with powers of c; the same inequalities
as in proposition 3.1 and its proof hold, but justified now by the bi-invariance
of order rather than commutativity. In other words, the commutator of any
two elements cannot be greater than the square of any positive element.
But there is no lower bound to such squares, because for any 1 < c ∈ G, if
1 < c1 < c < c21, then (cc−1

1 )2 < (cc−1
1 )(c1) = c. Therefore [a, b] = 1.

The rest of the statement follows by straightforward reasoning. One
method is to construct a measure on R invariant by G. The integral of
the measure gives a semi-conjugacy of the action to an additive subgroup
of R—in other words, the action of G is obtained by blowing up at most
countably many orbits.
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We can apply this information to describe the centralizer of a group of
periodic homeomorphisms of R. We’ll use coordinates S1 = R/Z, so for all
x ∈ R, g(Z(x)) = Z(g(x) where Z(x) = x+ 1.

The multiplicative semigroup of Z acts by conjugation on such represen-
tations. That is, if n 6= 0, we can define a new action n×ρ(x) = (1/n)ρ(nx).
This gives a new action centralized by the supergroup of finite index (1/n)Z.

Proposition 3.3. Let G be any group and ρ : G → ˜Homeo+(S1) a homo-
morphism such that all orbits for the action of ρ(G) on R are dense. Then
ρ is Z-equivariantly conjugate to an action whose centralizer is a closed sub-
group of the additive group of R. Either ρ(G) is abelian and isomorphic to
an additive subgroup of R, or ρ is is conjugate to n × ρ′ where n ≥ 1 and
the centralizer of ρ′(G) is Z.

Proof. Let Z(ρ(G)) ⊂ Homeo(R) denote the centralizer of ρ(G). For any
element h ∈ Z(ρ(G), the fixed point set of h is invariant by G; since all
orbits of G are dense, this implies that either h is the identity, or it has
no fixed points. Therefore, Z(ρ(G)) is a subgroup of R containing Z. If
it is cyclic, then ρ is conjugate to a group of the form n × ρ′. (We find
this conjugacy by looking at the quotient circle R/Z(ρ(G)).) Otherwise,
Z(ρ(G)) is isomorphic to a dense subgroup of R. This group cannot have an
exceptional minimal set, since G has dense orbits, so the action of Z(ρ(G))
on R is standard.

Similarly, if s : M̃ → S1 is a slithering, we can define n× s by composing
with the covering map S1 → S1 of degree n. We’ll say that a slithering is
primitive if it is not isomorphic to n× s′ for any n > 1.

Corollary 3.4. Let s : M̃3 → S1 be a primitive slithering of a compact 3-
manifold such that every leaf of F(s) is dense. For simplicity, assume also
that M3 is orientable and F(s) transversely orientable. Let ρ : π1(M

3) →
˜Homeo(S1) be the action of its fundamental group.
If π1(M) contains a non-trivial central element a, then either

i. M3 fibers over a torus, and s is induced from a slithering of the base,
or

ii. s admits an invariant measure and is a perturbation of a fibering of
M3 over S1, or

iii. the action of a satisfies ρ(a)(x) = x+ l for some integer l.

Proof. If a is an element of the center of π1(M
3), then proposition 3.3 says

that a acts either as the identity or without fixed points.
If a acts as the identity and if F(s) has no holonomy, then ρ(π1(M

3) is
abelian and admits an invariant measure, by proposition 3.2, so it fits in
alternative (ii).

If a acts as the identity and if b is a loop on any leaf L that has non-trivial
holonomy, then a and b generate a rank two abelian subgroup of π1(L); L is
finitely covered by a torus, therefore it is a torus, and M3 fibers over S1 with
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fiber L. The element a is invariant under the gluing map for this bundle,
and so M3 can also be described as fibering over T 2 with a as fiber, where
the slithering respects this structure.

If a does not act as the identity, then 3.3 gives us alternatives (ii) or
(iii).

3.1. Rotation numbers and commutator length. There are a number
of variations and extensions of the inequality 3.1. There is a rich literature on
this subject, which started with Milnor’s ([Mil58]) analysis of flat SL(2,R)-
bundles. Wood’s paper ([Woo69]) analyzed circle bundles over surfaces by

studying ˜Homeo+(S1) and is close to the present point of view. Other
noteworthy references include Eisenbud, Hirsch and Neumann ([EHN81],
analyzing Seifert fiber spaces), Sullivan ([Sul76], extending the theory to a
more general context and more general bundles) and Ghys ([Ghy87]). We
will discuss this topic further in [Thu98] so for now we will make just a quick
foray, leaving most details, discussion and development to other sources.

When we have a homomorphism ρ : G→ ˜Homeo(S1), then for each a ∈ G
there is a rotation number r(a) ∈ R, where r(a) generates the subgroup of R

that best approximates the cyclic subgroup generated by a. More precisely,
r(a) can be characterized as the unique real number such that for all x ∈ R,
the difference |ak(0) − kr(a)| has a bound independent of k. The value
r(a) mod Z is the same as usual rotation number of the action of a as a
homeomorphism of S1; the lifting to R is in virtue of the fact that a section
is defined for the associated torus bundle over S1. One way to define and
compute the rotation number is with an invariant measure. There is always
at least one measure µ on R invariant by a such that [0, 1) has measure 1.
Then we can define r(a) = µ([0, a(0))) = µ([x, a(x))); the characterization
of r(a) by boundedness of |ak(0) − kr(a)| is immediate.

An element a ∈ G is space-like if a has a fixed point, or equivalently, if
r(a) = 0. It is a positive time-like element or simply positive if r(a) > 0, or
equivalently, ∀x a(x) > 0. Negativity is defined similarly.

Using rotation numbers, we can amplify proposition 3.2, for groups of
periodic homeomorphisms of R:

Proposition 3.5. Let G ⊂ ˜Homeo+(S1) be any subgroup. Then either

(a) G is generated by its space-like elements, or
(b) the subgroup G0 generated by space-like elements has a common fixed

point, and consists entirely of space-like elements. This is equivalent
to the existence of an invariant measure on R for the action of G, and
also equivalent to the condition that r (rotation number) is a homo-
morphism.

Proof. The graph of a periodic homeomorphism of R can be mapped to the
cylinder (R × R) /Z, where Z acts diagonally. The graph becomes a closed
curve that represents the generator of the fundamental group of the cylin-
der. Thus, periodic homeomorphisms are in 1–1 correspondence with closed
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curves on the cylinder that are transverse to the images of lines parallel to
the axes. In rotated coordinates S1 × R, they become graphs of functions
S1 → R that strictly decrease the metric.

The set S of space-like elements is represented by graphs that intersect
the diagonal ∆, which is the graph of the identity. The set S ∗S of products
of two space-like elements is represented by graphs that intersect these; G0

is represented by graphs that can be connected to ∆ by a finite sequence of
these curves, such that each curve intersects the next in the sequence.

If you can go an unbounded distance in the cylinder by stepping from one
curve to intersecting curve, then then the union of the graphs of elements
of G0 intersects every possible curve in the homotopy class of the generator,
so G = G0,

Otherwise, let A be the subset of the cylinder consisting of the union of
the graphs of elements of G0, along with all bounded components of the
complement. Note that A is the graph of a symmetric, transitive periodic
relation on R (i.e., an equivalence relation) modulo Z. From the defining
properties, A is invariant by G0 and disjoint from its images by non-trivial
elements of G/G0. These images are linearly ordered. If the linear order
is discrete, then G/G0 is infinite cyclic. Otherwise, the order-completion

is homeomorphic to R—this R is the set of equivalence classes of ˜̄A. Since
G/G0 acts on R without fixed points, we can apply 3.2.

For any x0 ∈ R, the intersection of line y = x0 with A is the minimal
interval containing itsG0-orbit; its upper and lower endpoints are necessarily
fixed points for the action of G0.

Proposition 3.6. Let s1, s2 : M̃ → S1 be two slitherings of a compact
manifold M around S1. Then F(s1) and F(s2) are uniformly equivalent
if and only if the rotation number functions for s1 and s2 agree up to a
constant multiple.

If F(s1) does not admit a transverse invariant measure, then it is uni-
formly equivalent to F(s2) if and only if s1 and s2 determine the same sets
of space-like elements of π1(M).

Proof. One direction of the proposition is easy: if the foliations are uniformly
equivalent, then the rotation number functions agree up to a constant mul-
tiple, since the rotation number of α ∈ π1(M) is defined by the asymptotic
translation distance of αk. The rotation number function up to a constant of
course determines the set of space-like elements, which is the set of elements
whose rotation number is 0.

In the other direction, suppose that the two rotation number functions r1
and r2 agree up to a constant multiple, r1 = Cr2 Consider the map s1 × s2 :
M̃ → R × R. We claim that the image of s1 × s2 is contained in a bounded
neighborhood of a line in the plane. To establish this, choose a compact
fundamental domain K for the action of π1(M) by deck transformations on
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M̃ . Let zi be the function on pairs of leaves of F̃(si) that roughly measures
twice the integer part of their separation. Then for any α ∈ π1(M) and any

leaf Li of F̃(si) we have

2ri(α) − 1 ≤ z(Li, α(Li)) ≤ 2ri(α) + 1.

Applying this to pairs of leaves that intersect K, we see that the images
s1× s2(α(K)) are at a bounded distance from the line y = Cx. By applying
corollary 2.6, we see that any such pair of leaves has a uniformly bounded
distance, hence all pairs of leaves from the two foliations are contained in
bounded neighborhoods of each other.

If F(s1) does not admit a transverse invariant measure, then π1(M) is
generated by space-like elements. For any α ∈ π1(M), define gi(α) to be the
minimum length of its expression as a product of space-like generators, and
define

hi(α) = lim
n

→ ∞ (gi(alpha
n))1/n .

By considering the cylinder discussed in the proof of proposition 3.5, it is
clear that gi(α) can be approximated by a constant multiple of ri, up to
a bounded additive error term, so hi is a constant times rotation number.
Therefore, the set of space-like elements determines the uniform equivalence
class of F(si).

Inequalities such as in proposition 3.1 and its proof can be reworked and
extended in terms of rotation numbers. The rotation number of elements of
a group G of periodic homeomorphisms can be thought of as a 1-cochain on
the group.1 Proposition 3.5 describes the circumstances that r is a cocycle,
which is equivalent to being a homomorphism. Rotation number is usually
not a cocycle, but its coboundary (δr)(a, b) = r(a)−r(ab)+r(b) is bounded:

Proposition 3.7. Milnor–Wood inequality for surfaces with bound-
ary For all a, b ∈ G,

|(δr)(a, b)| = |r(a) − r(ab) + r(b)| ≤ 1(1)

|r([a, b])| ≤ 1.(2)

Furthermore, if a1, b1, a2, b2, . . . , an, bn is any sequence of 2n elements of G,

|r([a1, b1][a2, b2] . . . [an, bn])| < n+ 1,(3)

In general, for any homomomorphism of the fundamental group of an ori-

ented surface M2 with boundary into ˜Homeo+(S1), the sum of the rotation
numbers of its boundary curves does not exceed max(0,−χ(M2)).

1Cochains etc. for a group G are the same thing as simplicial cochains etc. for the
standard model of the Eilenberg-MacLane space K(G, 1), whose n-simplices are labelings
of the oriented 1-skeleton of an n-simplex by elements of G so as to form a commuta-
tive diagram. A labeling is determined by its value on a spanning tree, and different
notations arise from different choices of spanning tree. We’ll use the linear spanning tree
〈0, 1〉 , 〈1, 2〉 , . . . , 〈n − 1, n〉.
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Proof. The various inequalities all follow from the statement about an ori-
ented surface with boundary: (1) is the case of pair of pants, (2) is a punc-
tured torus, and (3) is a punctured surface of genus n.

Here is a sketch of a proof. Given the representation of π1(M
2), let

ξ → M2 be the associated foliated circle bundle, with section S : M2 → ξ

that is defined up to homotopy by the structure group ˜Homeo+(S1). Choose
a complete hyperbolic metric of finite area on M2, and lift this to give a
hyperbolic metric for the leaves of the foliation. By [Gar83], there is a har-
monic measure for this foliation, which can be normalized so it gives measure
2π to each fiber, which assigns an SO(2) structure to each fiber, and makes
the bundle into a principle SO(2)-bundle. The foliation gives a plane field
transverse to the fibers; average the slopes of the images of this plane field
under the action of the circle SO(2). The resulting connection has curva-
ture that never exceeds 1. Near the cusps, it converges to a flat connection
whose slope is 2π times the rotation number for the corresponding boundary
component.

This implies that the integral of the curvature does not exceed −2πχ(M2),
which translates into the inequality that the sum of rotation numbers of the
boundary components is not greater than the Euler characteristic ofM2.

Remark 3.8. There are better inequalities in the cases when the the rotation
numbers are not all integers. For instance, if 0 < r(a) < 1, then for all x,
a−1(x) > x, and the same holds for the conjugate: ba−1b(x) < x. It follows
that

r([a, b]) = r(a ∗ (ba−1b−1)) < r(a),

and similarly r([a, b]) > r(a−1). If 1 − r(a) < r(a), we can get a better in-
equality by using the fact that aba−1b−1 = (aZ−1)b(Za−1)b−1 and applying
the same reasoning. Continuing along the same path, as long as at least one
of r(a) or r(b) is not an integer, we can approximate it by the nearest power
of Z, and deduce that r([a, b]) ≤ 1/2. It is curious that when r(a) and r(b)
are both 0 (or other integers), then r([a, b]) can attain ±1, as shown by the
the tangent bundle of a once-punctured surface, or by the example of figure
7.

This is related to the fact that most periodic homeomorphisms with a ra-
tional rotation number have neighborhoods in the group of homeomorphisms
where the rotation number is constant. In particular, the cases of integral

rotation numbers are big baskets. In ˜PSL(2,R), these baskets contain one
lift for every hyperbolic element.

For an element g of the commutator subgroup G′ = [G,G], the com-
mutator length cl(g) is the minimum number of commutators [ai, bi] whose
product equals g. This is a sub-additive function: cl(gh) ≤ cl(g) + cl(h).
When g is not in G′, then we can define cl(g) = ∞. Define acl(g) =
lim infn→∞ 1/n cl(gn); we’ll call this the asymptotic commutator length of
g; it is finite if and only if α maps to an element of finite order in H1(M)
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Corollary 3.9. If M slithers around S1, then for any α ∈ π1(M),

r(α) ≤ acl(α).

A 3-manifold whose fundamental group contains a central element α can-
not slither around S1 unless M is a nilmanifold or acl(α) ≥ 1.

A 3-manifold whose fundamental group contains a normal Z2 subgroup
cannot slither around S1 unless M has a Euclidean or nilgeometry structure.

This contains a version of the Milnor-Wood inequality expressed in terms
of slitherings: for a circle bundle of Euler class n over M2, the fiber has order
n in homology. The asymptotic commutator length of the fiber is χ(M2)/n,
which must be at least 1 to admit a foliation transverse to the fibers.

Proof. The inequality on rotation numbers follows from equation 3. The
application to 3-manifolds whose fundamental group has a center follows
from 3.4.

Rotation number is a linear function on any abelian subgroup of π1(M):
this follows directly from the definition, and also is a consequence of inequal-
ity 1 of proposition 3.7. If there is a normal Z2 subgroup A ⊂ π1(M

3), then
the linear function ρ

∣∣A must be invariant by conjugacy, if F(s) is trans-

versely orientable, otherwise it is invariant up to sign. If M3 is orientable,
this implies there is a common eigenvector with eigenvalue identically 1 for
the conjugacy action of π1(M

3) on A, i.e., there is a central Z ⊂ π1(M
3).

In the non orientable or non-transversely-orientable cases, there still is a
normal Z whose centralizer necessarily has index at most two. It still follows
that M3 fibers with fiber a circle with Euclidean base, but besides the torus,
the base might be a Klein bottle ((XX) in Conway’s orbifold notation), or
any of the Euclidean 2-orbifolds whose non-trivial local groups have order
2: an annulus (∗∗), a Moebius band (∗X), a pillow (2222), a sack (22∗) or a
cross-sack (22X).
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4. Geodesic currents

The uniformization theorem says that every Riemannian metric on a sur-
face is conformally equivalent to a metric of constant curvature. Alberto
Candel ([Can93]) analyzed how the uniformization varies from leaf to leaf
in a lamination with 2-dimensional leaves. In particular, he showed that
if F is a codimension one foliation of an irreducible 3-manifold that either
the foliation is a perturbation of a foliation with torus leaves, or there is a
Riemannian metric that has constant negative curvature on each leaf. This
Riemannian metric varies continuously, but may not be very differentiable in
the manifold as a whole. We will not concern ourselves here with questions
of regularity of the metric, since we will really only use the quasi-isometric
properties, which are not delicate at all. If preferred, the metric of constant
curvature −1 on each leaf can be approximated by a C∞ or even Cω Rie-
mannian metric on M that induces a metric on each leaf whose curvature
is pinched between −1 − ǫ and −1 + ǫ; such a metric would be more than
adequate for what we will do.

Given any Riemannian metric for the leaves of a codimension one foliation
F of a closed 3-manifold M3, let T1(F) denote the unit tangent bundle of
the leaves of F , and let Gfl : R × T1(F) → T1(F) denote the geodesic flow
on the leaves.

Every flow on a compact space admits at least one invariant measure;
usually, there are many different invariant measures. Here is a more explicit
method to find invariant measures, in the case of Gfl for the foliation F(s)
of a slithering s of a compact 3-manifold M . Proposition 3.5 says that
the normal closure of the fundamental groups of the leaves of F(s) is the
kernel of a homomorphism (typically the trivial homomorphism) of π1(M)
to a subgroup of R. The image group consists of periods (integrals around
closed curves) for a transverse invariant measure equipped with a transverse
orientation, turning it into a closed current (which is a generalization of a
closed 1-form.) If π1(M) is not abelian, the kernel is automatically non-
trivial, therefore there are non-simply-connected leaves. The only case of
an M that slithers around S1 (or more generally, has a codimension one
foliation) such that all leaves are simply-connected is when M = T 3. Note
that in this case, the leaves of the foliation are not hyperbolic.

For any non simply-connected leaf, there must be a closed geodesic on the
leaf—this follows from the fact that the leaves have complete Riemannian
metrics with injectivity radius bounded from below. In a negatively curved
metric, any curve that is nearly geodesic is near a geodesic, so it is easy to
find a closed geodesic in each homotopy class, by curve-shortening. Even in
metrics for the leaves where there are no stipulations on the curvature, we
could apply a curve-shortening process to get curves on leaves that are more
and more nearly geodesic; such a curve might not converge on its own leaf,
but we could take a limit in M3 to get a closed geodesic on some leaf. This
gives an invariant measure.
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For a non-singular flow such as Gfl, we can factor any invariant measure
as a transverse invariant measure × dt, where dt denotes the measure of
time along flow-lines and coincides with arc length of a geodesic, in the case
of the geodesic flow; a transverse invariant measure is a measure locally
defined on the local space of orbits that is invariant under holomy. The
advantage of converting to a transverse invariant measure is that it is a
better topological invariant—intuitively, a transverse invariant measure is
something very similar to a closed orbit; it can be thought of like a limit of R-
linear combinations of 1-manifolds, and is a special case of a closed 1-current,
which is a version of a R-1-cycle. That is, a transverse invariant measure
gives a linear function on 1-forms on T1(F), obtained by an iterated integral,
first integrating the 1-form over flow-lines, then integrating with respect to
a transverse invariant measure. Transverse invariance of the measure is
equivalent to the condition that this linear function vanishes on df , for any
function f .

Given a foliation with a Riemannian metric for its leaves, let MG(F)
denote the space of transverse invariant measures for the geodesic flow. If
the manifold is compact, this is the cone on a compact convex set (using the
weak topology on transverse invariant measures).

Suppose now that we have a 3-manifold M3 that slithers around S1, with
a Riemannian metric that is negatively curved on the leaves. Let Z : M̃ →
M̃ be a homeomorphism that is a lift of a generating deck transformation
of R → S1. For any leaf L of F̃(s), Z(L) is a bounded distance from
L. Furthermore, every leaf is sandwiched between two iterates Zk(L) and
Zk+1(L).

Lemma 4.1. For each pair of leaves L and L′ in M̃ and every infinite
geodesic g on L, there is a unique geodesic g′ on L′ at a a bounded distance
from g.

Proof. Although the leaves are not quasi-isometrically embedded in M̃ , they
are properly embedded, since any fiber intersects any transverse curve at
most once. In fact, the leaves are uniformly properly embedded, in the sense
that for any constant A there is a constant B such that any two points on
L who have distance less than A in M̃ have distance less than B along L.
To see this fact, consider any sequence of shortest geodesic arcs along leaves
in M̃ whose endpoints have distance in M̃ not exceeding A. Adjusting by
covering transformations and passing to a subsequence, we may assume that
the two endpoints converge. Since the space of leaves in M̃ is Hausdorff,
the pair of endpoints is on a single leaf. The limit points are at a bounded
distance on their leaves, therefore, the length of the approximating arcs
are bounded, and their lengths converge to the distance between the limit
points.

Let C be the maximum separation between L and L′ (so every point on
either leaf has a point within distance C on the other). Given any geodesic
g on L, we can choose a sequence of points {pi} on g at uniform intervals,
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say 1, and find points qi within distance C of pi on L′, giving a path on
L′ whose length is increased at most by some constant factor. We can also
go from geodesics on L′ to paths on L that increase at most by a constant
factor. This means that quasi-geodesics on either leaf correspond to quasi-
geodesics on the other. In H2, or any other complete metric of pinched
negative curvature on R2, every quasi-geodesic is a bounded distance from
a unique geodesic. This establishes the lemma.

Corollary 4.2. If s is a slithering of a 3-manifold M3 around S1 with hy-
perbolic leaves, then there is a canonical identification of the circles at in-
finity for all the leaves of F̃(s), giving a single π1(M)-equivariant circle. In
other words, the circles at infinity for the leaves of F(s) forms a foliated
circle bundle over M .

Proof. A geodesic on a leaf L of M̃ is determined by a pair of distinct
points on its circle at infinity. The bounded-distance correspondence be-
tween geodesics on L and geodesics on another leaf L′ has to preserve this
product structure, since two geodesics converge to the same point at infinity
if and only if their distance in that direction stays bounded.

Note that this circle bundle is not in general isomorphic to the associated
circle bundle of the slithering: for example, in the case of a 3-manifold
that fibers over S1 with fibers of negative Euler characteristic, the slithering
bundle is trivial, and the tangent circle bundle of the fibers is not. However,
section 7 discusses a situation when these two bundles coincide.

5. Canonical transverse flows

A 3-manifold M that has a slithering s around S1 has a foliation F(s),
but it also has a somewhat mysterious extra piece of dynamics, the map Z
defined on the space of leaves of the foliation in M̃ which comes from the
deck transformations of the universal cover of the circle. In this section, we
will analyze the action of Z on geodesic currents on the leaves, enabling us
to enhance Z by constructing a connection for the slithering, canonical up
to conjugacy by a homeomorphism isotopic to the identity. In other words,
we will find a 1-dimensional foliation transverse to F(s) and uniformly regu-
lating it. Assuming transverse orientability, if we isotope M along flow lines
until each point goes once around the circle, the result is a leaf-preserving
homeomorphism of M that lifts to induce the automorphism Z of the space
of leaves of the universal cover.

First, we can enhance Z to define a map from T1(F) to itself that gives
an automorphism of the foliation by geodesics (flow-lines of Gfl), using a

standard trick. In the unit tangent space of the foliation of M̃ , first construct
a π1(M)-equivariant continuous map f1 that takes each point on a geodesic
on a leaf L to some point at distance at most A on the corresponding geodesic
on Z(L). This is readily constructed by making local choices and using a
partition of unity to average them. Now, define f(x) to be the average of
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f1(Gflt(x)) where t ranges over a long interval [−T, T ]. Since each flow-line
has an affine structure, averaging makes sense. It is easy to verify that f1 is
quasi-monotone, that is, it eventually progresses in a single direction. The
quasi-monotonicity of f1 implies monotonicity of f . (An alternative way to
do this is to use triples of points on the circle at infinity for the leaves.)

The automorphism Z of T1(F) induces an automorphism of the space of
transverse invariant measures, which we also denote Z : MG(F) → MG((F ).
If we denote PG(F) the set of non-zero transverse invariant measures up to
scaling, then Z acts as a projective endomorphism on PG(F).

Every projective endomorphism of a compact convex set has at least one
fixed point, by Perron-Frobenius theory. In other words, it follows from
general principles that there is some transverse invariant measure µ for Gfl
that is taken to a multiple of itself by Z. We’ll describe below a method
to find such a µ. (A projective endomorphism of a compact convex set is a
generalization of a positive matrix, and a fixed point for the transformation
is a generalization of a positive eigenvector).

Here’s one fairly explicit way to obtain such a measure ν. Let µ be any
invariant measure for Gfl. The mass |µ| of a transverse invariant measure µ
is the mass of µ converted back to an actual measure µ× ds. We consider
all the images Zk(µ) for k > 0, and look at the maximal growth rate (or
decay) of its mass,

g(µ) = lim sup
k→∞

( |Zk(µ)|
|µ|

)1/k

.

We will define a sequence of weighted averages of Z l(µ) that is more and
more nearly a 1/g(µ) eigenmeasure for Z. We can do this by choosing
weights for the first 2N iterates such that for the first N terms the weight
of each term is slightly more than 1/g(µ) times the weight of the preceding,
for the last N terms, slightly less than 1/g(µ) times the preceding. We can
choose weights of this sort so that most of the total comes from the middle
N terms of the sequence, provided N is a number so that for l > N the
estimates for g(µ) are not very much too high, and for some of the middle
terms they are near the limit. The weighted sum, normalized to have mass
1, is nearly a 1/g(µ)-eigenmeasure. Any limit point of this sequence gives
an eigenmeasure.

There is a kind of linking number between invariant measures for Gfl that
will help give us a better geometric understanding of the action of Z. This
notion is a generalization of the intersection number of two measured geo-
desic laminations or geodesic currents on a surface. In the case of a compact
surface S, the geometric intersection number i(µ, ν) is a symmetric bilinear
function of transverse invariant measures. This geometric intersection num-
ber is the integral of the product measure µ×ν over all intersection points of
geodesics on S. If the injectivity radius of S is ≥ a, then we can associate to
any intersection point of two geodesics g, h the subset of T1(S)×T1(S) con-
sisting of the pair of segments of radius a on g and h; different intersections
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map to disjoint sets. Therefore, a2i(µ, ν) < |µ||ν|. The length of a geodesic
is a special case of the intersection number with the natural Riemannian vol-
ume element for the geodesic flow, that is, the intersection number with a
‘random’ geodesic. This fits into a picture for Teichm”uller space analogous
to the Lorentz space model of Hn, see [Thu85].

To generalize intersection numbers to the geodesic flow Gfl for F , we will
say that two geodesics on leaves in M̃ cross if their projections to any single
leaf intersect. (See figure 8.) We want to think about crossings modulo the
action of π1(M). The way to record this information (a pair of geodesics
modulo deck transformations) is with a homotopy class of paths α between
flow-lines of Gfl, where each endpoint of α can slide along but not leave
its flow line. A path of this sort determines a crossing if for a lift to the
universal cover, the geodesic of its first endpoint crosses the geodesic of its
second.

For any crossing α, we can give a measure of the height difference of its
endpoints, by setting z(α) = 2k if Zk takes α(0), lifted to the universal

cover, to the leaf of α(1), and z(α) = 2k + 1 if, lifted to M̃ , the leaf of α(1)
is between the leaf of Zk(α(0)) and Zk+1(α(0)). This definition makes z
anti-symmetric in α, that is, z(α) = −z(α−1) where α−1 is the same path
in the reverse direction. Since the bounds for quasi-isometric comparisons
between geodesics on different leaves depend only on the value of z, every
crossing is represented by a path α whose length is bounded as a function
only of z(α).

Given two geodesics on leaves of M̃ , we can quantify crossing data by
grouping pairs of geodesics according to the value of z. We encode this
information in a formal Laurent series, integrating over all crossings α:

Λ(µ, ν) =

∫

α
tz(α)µ× ν(4)

Convergence of the integral can be checked similarly to convergence in the
definition of intersection number of laminations on surfaces. If the injectivity
radius of M is a, then given an arc α, any other arc joining points on
segments of radius a on the geodesics of its endpoints and staying within a
of α represents the same crossing. The space of arcs of length less than B is
compact; each coefficient is dominated by an integral of a locally bounded
measure over a compact space, therefore is bounded. This reasoning shows
that for each k there is some constant Ck such that the coefficient of tk in
Λ(µ, ν) is not greater than Ck |µ| |ν|.

The constant term of Λ(µ, ν) measures the actual intersections.

Λ(µ, ν)(t) = Λ(µ, ν(1/t).

The coefficient of t measures how much µ intersects ν when each geodesic
is swept through M to its image under Z. Other coefficients are similar.
This linking series is not continuous as a function of µ and ν: when even
terms are non-zero, it’s sometimes possible for µ and ν to have arbitrarily
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z=3
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Figure 8. This is a sketch of two leaves in the universal
cover of a slithering, with two geodesics. The circles at in-
finity of the leaves are identified, so we can tell whether or
not the geodesics cross. Crossings modulo deck transforma-
tions are identified by the homotopy class of a path that joins
them. Given two geodesics currents µ and ν (measures on
geodesics on the leaves), we aggregate all the crossings into
the linking series Λ(µ, ν) according to the z-value of a path
that joins them.

small perturbations where some or all of the weights on even terms jump to
neighboring odd terms.

If µ and ν are invariant measures, note that

Λ(µ, ν) = t2Λ(Z(µ), ν) = t−2Λ(µ,Z(ν)).

This implies that the coefficients of Λ(µ, ν) grows at most exponentially
fast. In other words, the portion with positive exponent converges in some
neighborhood of t = 0, and the portion with negative exponent converges in
a neighborhood of t = ∞. Of more immediate significance is the consequence
that the linking series is invariant when both arguments are transformed by
Z. This implies that if µ is any eigenmeasure for Z with eigenvalue not
1, then Λ(µ, µ) is identically 0. It also implies that if µ and ν are any
two eigenmeasures for Z such that Λ(µ, ν) 6= 0, then their eigenvalues are
reciprocal.

Proposition 5.1. Either

A. The action of Z on geodesic currents is globally bounded, that is, there
is some constant K such that for every transverse invariant measure
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µ for Gfl and for every integer k,
∣∣∣Zk(µ)

∣∣∣ < K |µ| ,
or

B. there is a transverse invariant measure ν for Gfl that is an eigenmea-
sure of Z and such that Λ(ν, ν) = 0

Proof. Suppose that the action of Z on geodesic currents is not globally
bounded, so there is a sequence {µi} of transverse invariant measures for
Gfl of mass 1, and integers {ki} such that

{∣∣Zki(µi)
∣∣} tends to ∞. Then

the sequence of normalized transforms
{
µ′i = Zki(µi)/

∣∣Zki(µi)
∣∣} has the

property that all the coefficients of Λ(µ′i, µ
′
i) tend to 0 as i tends to ∞, in

light of equation 5. We can pass to the limit, and obtain an invariant measure
µ for Gfl. Even though Λ is not in general continuous, it follows in this case
that Λ(µ, µ) = 0, since the terms of the limit only have contributions from
the limits of neighboring terms. In other words, there are no crossings at all
between geodesics in the support of µ, in no matter what homotopy class
α. The set σ consisting of all geodesics on leaves of F that do not cross
geodesics in the support of µ forms a closed set, invariant under Gfl and
under Z. Therefore, there is a transverse invariant measure ν for σ that is
projectively invariant by Z.

Remark 5.2. It can happen that the masses of images of invariant measures
are unbounded, yet the only positive eigenmeasures for Z have eigenvalue
1. This happens, for example, with the mapping torus of a Dehn twist Tγ

around a non-trivial curve γ on a negatively curved surface. In this case, Z
acts on fibers as Tγ ; it represents isotoping of the mapping torus once around

the circle. For any curve β that crosses γ, the images Zk(β) grow to infinity
in length, while the normalized transverse invariant measure supported on
Zkβ converges to γ, which is an eigenmeasure of eigenvalue 1.

A slithering s ofM3 is reducible when there is an embedded incompressible
torus or Klein bottle where s induces a slithering. A torus of this form is
a reducing torus (or Klein bottle if it’s a Klein bottle.) It is known from
foliation theory that in a foliation of a 3-manifold without Reeb components,
any incompressible torus is isotopic to a transverse torus, or a leaf in the
special case of a foliation whose leaves are all tori. Consideration of the
various cases shows that a torus transverse to F(s) is a reducing torus,
unless M fibers over S1 or I with fiber a torus (which does not imply that
s is itself a fibration.)

Before proceeding further with the generic case B of proposition 5.1, the
non-generic case A has an interesting story:

Theorem 5.3. (Convergence group theorem, Gabai [Gab92] and
Casson and Jungreis, [CJ94]) In case A of proposition 5.1, M is a Seifert
fiber space and the slithering is a foliated circle bundle.
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Proof. Note: this is not a new proof, but simply a reduction of the current
statement to a standard established form.

The analysis of this case is a consequence of a long, winding series of de-
velopments starting with Nielsen, who settled the case mapping torus case,
which is equivalent to—Nielsen showed that if some power a diffeomorphism
φ of a surface is homotopic to the identity, then φ is isotopic to a diffeomor-
phism of finite order, which implies that the mapping torus of φ can also be
described as a Seifert fiber space. We will not attempt to recount the history,
nor to fit the present application naturally into context. However, it’s worth
remarking that the hypothesis (A) is close to the condition that π1(M) acts
as a group of uniform quasi-isometries of the hyperbolic plane, which is close
to the condition that it acts on the circle as a convergence group, meaning
its action on triples of points on the circle is properly discontinuous. It’s
also worth remarking that the set of triples of points on a circle, modulo a
convergence group, comes naturally equipped with a slithering around S1.

We will content ourselves here with deriving the theorem logically from
established knowledge. For this, it will be sufficient to find an immersed
incompressible torus. Assuming M is not T 3 (where the theorem is more
trivially true), not all the leaves of F(s) are simply connected. Let γ be
a non-trivial curve on any leaf. Choose a base-point ∗ ∈ M , and for each
image Z(γ) connect γ by a shortest path to ∗. This gives a sequence of
homotopy classes of bounded length, so they repeat infinitely often. We
can form a long immersed cylinder connecting all the images Zk(γ) and
intersecting each leaf in a geodesic, not necessarily closed, but converging
to the same end points on S1

∞. The homotopy information tells us that this
this cylinder eventually joins up, forming a torus or Klein bottle.

If F(s) is reducible, then it decomposes into geometric pieces by the ge-
ometrization theorem for Haken manifolds. Hyperbolic pieces are incompat-
ible with immersed incompressible non-boundary-parallel tori. Taut folia-
tions of Seifert fiber spaces have been understood for some time—the Haken
cases were analyzed in [Thu72], and the non-Haken cases followed from later
developments. In general, a taut foliation of a Seifert fiber is isotopic to be
transverse to the fibers provided the fiber is not homotopic to a leaf. If
the base is a negatively-curved orbifold, the only possibility for F(s) to be
isotopic so that it is transverse to the fibers. It can happen that the leaves
of s are ‘vertical’ when the base is Euclidean, but then (given condition A)
there is some other Seifert fibration transverse to the leaves.

If s arises by sewing together Seifert fiber pieces along tori in a way that
fibers cannot be chosen to align, then a geodesic current that crosses an
offending torus violates hypothesis A (just as in remark 5.2.)

If M is torus-irreducible but has an immersed incompressible torus, the
culmination of the long development mentioned above implies that M must
be a Seifert-fiber space.
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We need to think about the topology as well as the measure theory of the
action of π1(M) on Gfl. To develop the topological picture a little further,

consider any L in M̃ . The fundamental group of M acts on the set of
geodesics in L. Consider any closed invariant subset I for this action. Form
an ǫ-neighborhood Iǫ (on L) of the union of geodesics in I. We claim that
if Iǫ, or any connected component of Iǫ, does not limit to all of S1

∞, then
s is reducible. To see this, let X ⊂ S1

∞ be any proper subset that is the
limit set for some component of Iǫ, and form the convex hull H of X in the
hyperbolic metric on L. Each element of π1(M) takes H to itself or to a set
that is disjoint except possibly on one boundary line. More specifically, it
is possible to have two distinct boundary lines in a single ǫ disk on L, but
not three. Now consider all the images of boundary lines of H back in M ,
transported to all leaves of F(s). The union is compact, since M is compact
and each sheet of the surface swept out by the boundary lines has a uniform
neighborhood intersecting at most one other sheet. Therefore, the union is
a compact surface. The surface has an induced slithering, which means its
Euler characteristic is 0, so it is a torus or Klein bottle.

Note in particular that if there is some ǫ such that Iǫ is not connected,
then any component of Iǫ has a limit set X that is a proper subset of S1

∞,
so s is reducible.

We will say that a π1(M)-invariant set I of geodesics fills M3 if for every
ǫ, Iǫ is connected, and its limit set is the entire circle at infinity. As we have
seen, if s is irreducible, then every I fills M .

If there are crossings in M among the geodesics in I, then there may not
be a clear choice of a canonical form for the immersed surfaces swept out
by I in M—this is the usual problem, that whenever three or more lines
cross each other, there are multiple patterns in which they can cross, and
it is hard to choose among them. However, when there are no crossings, I
sweeps out a topologically well-defined 2-dimensional lamination S(I) in M ,
intersecting each leaf in the geodesic lamination covered by I.

Lemma 5.4. If I is a closed π1(M)-invariant subset of geodesics with no
crossings, then the gaps of I are dense, that is, no neighborhood in H2 is
foliated by geodesics in I.

Proof. If any open set is swept out by geodesics, one or the other endpoint
of the geodesics actually moves. If we go toward a non-constant endpoint
in H2, the geometric limit is a foliation of H2 by geodesics having one end-
point constant and the other endpoint completely traversing the remainder
of the circle. Since M is compact, this behavior would actually occur in the
intersection of S(I) with some leaf, and hence in every leaf. It follows that
π1(M) would have a fixed point on S1

∞, so the action of π1(M) on a leaf is
solvable. There is enough information in this picture to determine that M
would have to be commensurable with the mapping torus of an Anosov dif-
feomorphism of the T 2, as developed in the analysis of Dehn surgeries on the
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figure eight knot in Thurston, [Thu79]. However, the foliations compatible
with this foliation are not of the form F(s).

It is easy to see that S(I) is an essential lamination. Each gap in the
lamination I sweeps out a submanifold of M , which is a gap in S(I) . If we
truncate the 3-dimensional gaps where the geodesic sides approach within ǫ,
we obtain a finite number of compact 3-manifold with walls that alternate
being geodesics on their leaves and ǫ-hops from one geodesic wall to another.
If s is irreducible, then the gaps are solid tori, in the form of ideal polygons
that wrap around through M and return with some rotation.

Proposition 5.5. If s is an irreducible slithering that has an invariant set
I of non-crossing geodesics, then s is regulated by a flow φt that preserves
the 2-dimensional lamination S(I).

Proof. We can first construct the flow φ on S(I) by first making a rough
but bounded guess, then averaging along the geodesics. If the flow is chosen
continuously on S(I), we can easily extend continuously to the solid torus
gaps.

Proposition 5.6. Let s be an irreducible slithering of a closed three-
manifold M3 around S1 which is not in case A of 5.1 ( i.e., is not a Seifert
fiber space, by 5.3). Let λ be the largest sustained growth factor for any
lamination under positive or negative iterates of Z, that is,

λ = lim sup
|k|→∞

( |Zk(µ)|
|µ|

)1/k

Then there are two transverse invariant measures µs and µu for Gfl that are
λ and 1/λ eigenmeasures for Z.

Proof. We can use the procedure described above to find an eigenmeasure
whose transverse invariant measure shrinks in a direction that the growth
factor is attained. Say this is µu, whose transverse invariant measure grows
for negative k.

Now let ν be any measure such that Λ(µs, ν) 6= 0, from a construction
of section 4. Because µs is a λ−1 eigenmeasure of Z, this series has the
form (a0 + a1t)

∑
k λ

−kt2k. In other words, ν crosses µs more and more
for negative time, with the measure of crossings growing by a factor of λ
at each stage. This can only happen if the mass of ν grows geometrically,
comparable to λ−k for k < 0. We can construct a λ-eigenmeasure by taking
any limit point µs of weighted combinations of these images under Z−k.

So far, we have not logically deduced the geometric relationship between
µu and µs. It is logically consistent with proposition 5.6 and its proof (even
if this may seem bizarre geometrically) that µu and µs are mutually singular
measures that are physically supported on the same invariant subset of Gfl.
Our next task is to analyze this geometry, so that, in particular, we will be
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able to use eigenmeasures for Z to construct a pseudo-Anosov flow transverse
to F(s).

We suppose that s is an irreducible slithering of a closed 3-manifold M
with transversely oriented foliation F(s), and that ν is a transverse invariant
measure for Gfl and eigenmeasure for Z with eigenvalue λ < 1. Let Iν ⊂ L
be the support of ν. Define ML+ to be closed halfspace of M̃ , on the
positive side of L, and ML− similarly. If we project geodesics in ML+ to
L, this induces a map on transverse invariant measures; since λ < 1, the
contributions of ν to the projection decrease exponentially as a function
of the height function z, so this gives a well-defined transverse invariant
measure for Iν . Let’s call this image L+(ν). (We could also have projected
just the contribution from a fundamental domain 0 ≤ z < 2, which would
give a transverse invariant measure for Iν no matter what the value of λ.)

Note that the corresponding measure on Z(L) is the measure on L mul-
tiplied by λ:

Zk(L)+(ν) = λkL+(ν).

Lemma 5.7. L+(ν) has no atoms, that is, there is no single geodesic of Iν
with positive transverse measure.

Proof. If there were any atoms for L+(ν), its images under negative powers of
Z would have arbitrarily large mass; this is incompatible with compactness
of M and the finite mass of ν.

Let’s focus on one gap G on L, and look at what happens along one of its
sides g (where g is a geodesic). Choose a short arc J transverse to Iν and
connecting G to another gap. Then J ∩ Iν is a Cantor set, since gaps are
dense and there are no atoms to L+(ν). Define G ⊂ R to be the collection
of values of the ν-measures along J from G to other gaps; then G is a dense
subset of the interval [0, νJ ].

There are infinitely many gaps in Iν , but each of them is an ideal polygon
that is a lift of the intersection of one of the finitely many solid tori gaps in
S(Iν). This implies that there is bounded variability of the geometry and
of the transverse invariant measure among all the gaps of Iν wherever they
appear, among all the leaves of M̃ .

Let S(G) be the solid torus gap in M swept out by G. We can follow the
solid torus once around, giving a return map of G to itself. The return map
RG of G might take g to a different side of G, but some iterate Rg = Rp

G
takes g back to itself. The return map is not in general a power of Z, and will
not in general take L+(ν) projectively to itself, but nonetheless the return
map is sandwiched between two powers of Z: if α is an arc in the homotopy
class of Rg, which can be identified with a deck transformation of M̃ →M
that does the right thing to g, then it is sandwiched between ⌊z(α)/2⌋ and
⌈z(α)/2⌉ power of Z, translating to the inequalities

λ⌈z(α)⌉L+(ν) ≤ R∗
gL+(ν) ≤ λ⌊z(α)⌋L+(ν).



THREE-MANIFOLDS, FOLIATIONS AND CIRCLES I 35

Since the transverse measure for Iν shrinks when pushed forward by the
return map, this says that the leaves of Iν have to spread further from each
other. We are aiming to construct particular return maps that balance the
separation of geodesics by quasi-uniformly shortening them.

We may assume that J is short enough so that it cuts each gap it intersects
other than G into a single tip of the ideal polygon on one side, and the thick
part of the ideal polygon on the other. Rg sends J to some arc Rg(J)
transverse to Iν ; no matter how J was chosen, at least some initial segment
of this image arc crosses the same leaves as an initial segment of J . We
may replace J by a segment that has an Iν -preserving isotopy to an initial
segment of Rg(J).

Now construct an annulus S(J) transverse to S(Iν) by sweeping J around
S(G), always intersecting the same set of leaves until it returns via Rg; at
that point, glue an initial segment to J . The figure formed is like a one-tooth
saw-blade slicing through layers of S(Iν) (figure 9.)

J


R

Saw blades

Teeth

Figure 9. Saws cutting through laminations
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We can continue in the same vein, to construct a family S(Ji) of disjoint
saw-blade annuli, one for each annular face of each solid torus gap of S(Iν).
Only the tooth of a saw-blade cuts through S(Iν); except for the tooth, the
rim is in a gap.

Every leaf of S(Iν) is dense in S(Iν)—otherwise, its closure would either
contain all of S(Iν) except for isolated leaves, which we have ruled out by
lemma 5.7, or it would be small enough to give us a reducing torus. It
follows that the saw blades S(Ji) have sliced each geodesic of Iν on each leaf
of F(s) into bounded intervals.

We can group these intervals of geodesics according to their homotopy
class rel saw blades. On any one leaf of F(s), they group into a locally finite
collection of parallel bundles. Topologically, if the parallel arcs in one bundle
are squeezed together to one arc, the collection of arcs plus intersections of
saw-blades divides the surface into compact simply-connected regions, which
become polygons if the saw-blade intersections are collapsed to points. The
polygons come from gaps of Iν and from ends of the saw-blade intersections
(or both).

In three dimensions, a set of parallel arcs sweeps out sheets (like a layer
pastry). In the downward direction, sheets can run into saw teeth, where
they are cut into two pieces. If there were any family of arcs that could
be isotoped downward forever, then the arcs would have to stay bounded
in length forever. The arc defines a homotopy class of paths between the
cores of the two solid tori; there are only finitely many homotopy classes
of bounded length, so eventually this homotopy class repeats, joining to
form an annulus that gives a homotopy of some power of the core of one
solid torus to some power of the core of some solid torus (possibly the same).
The intersection of the annulus with leaves of F(s) gives homotopy classes of
arcs between two gaps; however, because λ 6= 1, these arcs would have zero
intersection number with L+(ν), which is impossible. Therefore, every sheet
of arcs is split by a saw-tooth in the downward direction. In the upward
direction, every sheet that is not an original gap boundary eventually runs
off the edge of a saw tooth, where it merges with other sheets. In the three-
dimensional picture in M , only finitely many homotopy classes of arcs occur,
where each homotopy class β serves as an index pointing to a family Pβ of
parallel rectangular sheets. Let tβ ∈ [0, 1] be a parameter for the vertical
direction of Pβ , so that tβ locally parameterizes the leaves of F(s) within a
rectangular solid that encloses Pβ.

At this stage, we can apply the automorphism Z, that is, turn on the
saws, after first adjusting the blades into proper alignment. For each solid
torus gap, attach the hubs of all its saw blades to the core circle. The image
of a saw-blade under Z−1 intersects fewer leaves; it is isotopic to a subset
of itself. If we modify Z using such an isotopy, then the image of the each
saw blade under Z contains the saw blade. We can also arrange the flow
φ to be tangent to the saw blades and to their edges, so that Z takes each
saw blade to the same flow line. Under iteration of Z, the blades expand
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indefinitely, by consideration of the measure L+(ν). Their edges remain
bounded in length, since they traverse a bounded z-length. As the saw
blades expand, they remain transverse to the intervals of Iν , chopping them
successively into more and more pieces. In other words, the blades appear to
converge to a lamination that has a finite number of leaves with a singularity
at the core of each solid torus gap of S(Iν). To make a precise definition
of a limiting lamination, we can consider the order type of intersections
of the saw blades with the arcs β. The union of all intersections gives
a countable linearly-ordered set on each homotopy class of arcs. The order
completion of any countable linearly-ordered set (completion with Dedekind
cuts, adjoining an upper and lower endpoint if needed) is a compact linearly-
ordered set Xβ that has an order-preserving embedding in the unit interval
unique up to homeomorphism (and might well be an interval.) For each
β, form the product of Xβ with a rectangle; we’ll assemble these pieces
to form a singular foliation transverse to F(s) and to S(Iν). For each β,
we have a rectangular solid, with a foliation or lamination already in two
coordinate directions. The new leaves have automatic gluing maps at their
top and bottom faces, since these come from the cutting edges of the saw
blades, where each intersection continues through. The horizontal faces work
similarly.

For the sake of symmetry, we can blow up the resulting lamination along
its singular leaf, replacing the singular leaf with a solid torus gap, having new
leaves in the form of annuli for each ‘side’ of the singular leaf. We’ll call this
new lamination S∗(Iν). The intersections of leaves of S∗(Iν) with leaves of
F(s) form a 1-dimensional foliation I∗ν , that is, S∗(Iν) = S(I∗ν ). Each leaf of

I∗ν , lifted to M̃ , converges to distinct points at its two endpoints, on account
of its transversality to the geodesic lamination Iν . (The leaves of Iν describe
neighborhood bases for all points at infinity except the vertices of its gaps;
the leaves of I∗ν do not stay in any gap of Iν , and cross Iν at angles bounded
from below.) Therefore, each leaf of I∗ν is homotopic to a unique geodesic.
The homotopies can be made uniformly bounded, using the compactness of
M . We straighten out all the leaves of I∗ν to geodesics; it doesn’t matter if
conceivably this collapses multiple leaves to a single leaf, since the process
is invariant from leaf to leaf. The resulting lamination is still transverse to
Iν , so we can simply make this adjustment, keeping the same names I∗ν and
S∗(Iν) for the 1-dimensional and 2-dimensional laminations.

Now we apply previous constructions, to obtain an invariant measure ν∗

on I∗ν which is a 1/λ eigenmeasure for Z. We obtain a measure L−(I∗ν )
on each leaf. By examining the possible gaps, which necessarily are ideal
polygons, it’s clear that its support must be all of I∗ν .

To summarize and slightly extend:

Theorem 5.8. Let s : M̃ → S1 be a slithering of a compact 3-manifold
M . Then M splits along some (possibly empty) family of reducing tori into
a finite number of pieces. On each of the pieces, the induced slithering is
either a foliation transverse to the fibers of a Seifert fiber space, or it admits
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a transverse pseudo-Anosov flow φt (or possibly a pseudo-Anosov line field,
if F(s) is not transversely orientable) whose stable and unstable foliations
are uniquely determined by s.

Proof. In the case of a closed manifold with an irreducible slithering, we are
nearly done. We have already addressed the case that lengths of invariant
measures for the geodesic flow transform boundedly.

We should recall here that if the leaves of F(s) do not have hyperbolic
type, then F(s) admits a transverse invariant measure (for instance, by
Candel, [Can93]), and s is a perturbation of a mapping torus of a diffeo-
morphism of T 2 (or possibly a bundle over S1 with fiber a Klein bottle, or
a bundle over the I orbifold, if we do not make assumptions of orientability
and transverse orientability). In this situation, the theorem is easily verified.

If lengths of invariant measures transform unboundedly but have eigen-
value 1, we still get an eigenmeasure ν for Z whose support has no crossings
(proposition 5.1.) The eigenvalue 1 implies there is a transverse invariant
measure for S(Iν). Such a measure is expressible as a cohomology class
with coefficients twisted by the transverse orientation of S(Iν). It can be
perturbed to a rational class, which gives a perturbed 2-dimensional lami-
nation having nearby support, all of whose leaves are closed. These leaves
have foliations induced from F(s), so they are toruses, and s is reducible.

If there is an eigenmeasure ν for Z of eigenvalue 6= 1, we have the two
laminations S(Iν) and S∗(Iν) constructed in the preceding discussion. By a
familiar technique (see e.g. [Thu79]), given F(s), S(Iν) and S∗(Iν), we ob-
tain a decomposition of M consisting of intersections of leaves and/or gaps
from the three. If we collapse the elements of this decomposition, we ob-
tain a homeomorphic manifold where the laminations are singular foliations,
intersecting in 1-dimensional foliation. Every arc of the flow of z = 1 multi-
plies L+(ν) by λ and L−(ν∗) by 1/λ. We can adjust the transverse metric
so that the transverse flow steadily compress in one normal direction while
expanding in the other, making it a pseudo-Anosov flow. Given uniqueness
of the pseudo-Anosov foliations, the non-transversely-orientable case can be
obtained from the transversely oriented double cover.

Any other invariant measure µ for the geodesic flow has to have crossings
either with ν or with ν∗, so its eigenvalue is determined, and it can have
no crossings with the other of the two. This implies uniqueness of the
geodesic laminations Iν and I∗ν , which implies uniqueness of the pseudo-
Anosov foliations.

When s has torus boundary, for each boundary component, we can take
a horoball in H3 modulo Z2, glue it onto the given boundary component,
and extend the foliation by coning to the cusp. The point is that when
we uniformize the resulting leaves, we will obtain well-behaved metrics that
behave like coverings of complete hyperbolic surfaces of finite area. We
obtain an identification of the circles at infinity of leaves in the universal
cover—we actually have the best control of the quasi-constants inside cusps.
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This allows us to make all the constructions, projecting geodesics from one
leaf to another, and in particular defining the action of Z on the geodesic
flow Gfl of the leaves.

As before, if there is an eigenmeasure for Z with eigenvalue 1, the slith-
ering is either reducible, or M is a Seifert fiber space.

When there is an eigenmeasure ν of eigenvalue 6= 1, then ν can have no
crossings with itself. This forces each end of each geodesic in the support of ν
either to avoid a neighborhood of the cusps, or to head straight for the cusp:
any geodesic that goes very far toward the cusp without going all the way
wraps around and crosses itself. By Poincaré recurrence, almost all measure
leaving a cusp ends up going back into a cusp. Since there are countably
many cusps, this means almost all measure near cusps is supported on atoms.
But there can be no atoms since λ 6= 1, therefore ν has compact, bounded
support.

When we now look at the two-dimensional lamination S(Iν), there is an
additional kind of gap, enclosing a cusp. These have a strong resemblance to
the other, solid torus, gaps: they have the form of the suspension of a map
of a punctured ideal polygon to itself, where the punctured ideal polygon
has one or more sides. We can use these to build a flow φt that regulates s
and is tangent to S(Iν).

We can construct saw blades for the cusp gaps, just as for the solid torus
gaps. We cone the hub of each cusp saw blades to the cusp (attaching a
pseudosphere) before turning the saws on. The construction of S∗(Iν) goes
through just as before.
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6. Peano curves

Suppose F is a taut foliation of a hyperbolic 3-manifold M3. It is known
(Fenley, [Fen92b]) that not all of the leaves can be quasi-isometrically em-
bedded: there exist geodesic paths in any Riemannian metrics for the leaves
that can be shortened in M3 by arbitrarily large factors using homotopy in
M3 rel endpoints. In other words, the geometry of the leaves is very far
from the geometry of a hyperbolic plane in hyperbolic 3-space—so, what
do they look like? In particular, in M̃ , do the leaves extend continuously
to give a map of H2 ∪ S1

∞ to H3 ∪ S2
∞, and if so, what is the topology and

geometry of this map?
The geometry is already interesting in the simplest taut foliations of hy-

perbolic 3-manifolds, the foliations by the fibers for three-manifolds that
fiber over S1. This case was resolved by Cannon and Thurston ([CT85]),
where it was shown that the universal coverings of fibers extend to define
sphere-filling ‘Peano’ curves. Fenley ([Fen92a]) generalized this result to the
case of depth one foliations, that is, foliations such that every leaf is either
closed, or accumulates only on closed leaves. Fenley showed in the depth one
case that all leaves converge at infinity, but the limits are not sphere-filling
curves except when the closed leaves are fibers of a fibration over S1. The
‘typical’ behavior at infinity is for the depth zero (closed) leaves to limit as
circles, and the depth one leaves to limit to curves whose image is a swiss
cheese, but there are also other possibilities, depending on the nature of the
characteristic I-bundles for M3 split along various leaves.

We will show here that the behavior of slitherings at S2
∞ is like the case

of manifolds that fiber over S1.

Theorem 6.1. Let s : M̃ → S1 be a slithering of a compact 3-manifold M ,
whose interior has a complete hyperbolic metric of finite volume.

a. The universal covers of the leaves of F(s), lifted to H3, extend to give
continuous maps

H2 ∪ S1
∞ → H3 ∪ S2

∞.

These maps respect the identification (corollary 4.2) of their circles at
infinity.

b. The universal covers of leaves of the stable and unstable laminations
associated with the transverse pseudo-Anosov flow (theorem 5.8), lifted
to H3, extend to give another set of continuous maps

H2 ∪ S1
∞ → H3 ∪ S2

∞.

c. If M is closed, then the universal coverings of leaves of the stable and
unstable pseudo-Anosov laminations are quasi-isometrically embedded
in H3.

d. If ∂ M is non-empty (necessarily it consists of tori and Klein bottles)
then the universal coverings of leaves of the stable and unstable lami-
nations are not quasi-isometrically embedded in H3. For any stable or
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unstable leaf l ⊂ M having a non-trivial closed loop homotopic to the
boundary, the two endpoints of the universal cover of the loop are iden-
tified at S2

∞. Otherwise, the circles at infinity for universal coverings
of leaves of the stable and unstable laminations embed in S2

∞.
e. The same results apply to the leaves of any uniform foliation F obtained

from F(s) by blowing up leaves.

Remark 6.2. This theorem and its proof work equally well if M is a nega-
tively curved manifold, or simply an irreducible manifold whose fundamental
group is word-hyperbolic in the sense of Gromov (see for instance [Gro87].)
However, since a follow-up paper is planned that will proveM is a hyperbolic
manifold, the statement and its proof are expressed in terms of hyperbolic
3-manifolds, for clarity and simplicity.

Proof. The proof closely parallels the proof in [CT85]. The basic geometric
ingredients are the same as for a hyperbolic 3-manifold that fibers over S1:
uniform spacing between the leaves and a transverse pseudo-Anosov flow.

Let lu and ls denote the 2-dimensional unstable and stable pseudo-Anosov
laminations (S(Iν) and S∗(Iν) in the notation of section 5), and let luu and lss
denote the one-dimensional strong unstable and stable laminations, whose
leaves are geodesics on the leaves of F(s). The strategy is first to show that

the leaves of lu and ls are quasi-isometrically embedded in M̃ , and that their
circles at infinity converge on S2

∞. The leaves of these two laminations will
give us enough footholds on S2

∞ to pin down the asymptotic behavior of the
leaves of F(s), which bend and wander far more.

We’ll use the notation l̃u, l̃uu etc. to refer to the universal covering lam-
inations in M̃ . If M has boundary, then we can think of M as embedded
in the associated complete hyperbolic manifold as a submanifold with horo-
spherical boundary. We’ll denote as M+ the complete hyperbolic manifold,
obtained by gluing horoballs modulo discrete groups to M . Of course, M+

is diffeomorphic with the interior of M . The pseudo-Anosov laminations are
contained in M itself; the slithering extends to a slithering s+ of M+, with
associated foliation F(s+). The leaves of F(s+) are complete hyperbolic
surfaces; the leaves of of F(s) are obtained by deleting horodisks or their
quotients by Z (pseudo-spheres).

There is a canonical technique for showing geodesity and quasi-geodesity.
Suppose, for instance, that γ is a loop in a Riemannian manifold; how do you
know whether it is the shortest geodesic in its homology class? The duality
between the L1-norm on curves (length) and the L∞ norm on 1-forms gives
a necessary and sufficient criterion: γ is minimal in its homology class if
and only if there is a closed 1-form ω whose L∞ norm is 1 and such that
|ω

∣∣T1γ| = 1.
Similarly, to show that an embedding of path-metric spaces X ⊂ Y is

a quasi-isometric embedding, a good method is to look for a retraction
r : Y → X such that the pull-back by r of the path-metric of X is a
pseudo-path-metric on y that is quasi-less than the path-metric of Y . This
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translates into a formula that tries to express the principle:

∃a > 0 ∀x, x′ ∈ X ∀y, y′ ∈ Y
(
r(y) = x & r(y′) = x′

)
=⇒ d(y, y′) > a(d(x, x′) − a).

However, the real idea is to keep track of rough distances in X along paths
in Y , rather than to analyze all distances at once. We can imagine a toll-
collector on X who watches the progress of r. Every time r moves further
than some threshold a on X, the toll-collector collects a toll, asserting that
the path in Y has gone at least some minimum distance b in Y . If this
assertion were false, the people traveling in Y would put in a massive wave
of protest; however, nobody objects when they can travel a long distance in
Y without paying a toll. The condition on legitimacy of the toll-collection is
logically equivalent to the formula; a retraction that satisfies this condition
is a quasi-isometric retraction.

We’ll first analyze the case that M is a closed hyperbolic manifold. Be-
sides the hyperbolic metric, we have a second metric that gives a hyperbolic
structure to each of the leaves of F(s). In the leaf-hyperbolic metric, the

projection of a leaf L of F̃(s) to any leaf of l̃ss is a quasi-isometric retraction
for the intrinsic geometry of the leaf L. However, it is not obvious what hap-
pens with this retraction as one varies from leaf to leaf, so we will construct
an alternative.

Instead, we can retract L in M̃ to a leaf g of l̃ss by a retraction r that maps
each leaf of l̃uu that intersects g to its intersection point and is monotone in
between, in the sense that r maps the region between two leaves of luu to
the interval between their images.

There is an upper bound to the length of an intersection of g with a gap of
l̃u; clearly, any minimum threshold for assessing the progress of r has to be
longer than this minimum length, since within these intersections, r expands
distances by arbitrarily large factors. Let a be a real number greater than
the length of any intersection of any leaf of lss with any gap of lu. Such a
number exists, by compactness. It follows that there is a lower bound b to
the transverse measure of a segment on lss of length a, as measured by a
pseudo-Anosov (exponentially shrinking) transverse measure for lu.

The recipe for r on particular leaf of F̃(s) can be assembled to give a

retraction (still called r) of M̃ to any leaf H of l̃s, so that each leaf of F̃(s)

or of l̃u goes to its intersection with H. Let p : [0,K] → M̃ be any path

parametrized by arc length in M̃ . The toll-collector on H makes no charge
if |z(p[0, t])| ≤ 1 for t < K and if the transverse measure of its projection

to the l̃ss leaf of r(p(0)) never exceeds b. Otherwise, as soon as one of these
bounds is exceeded, a charge of $.25 is imposed, and the accounting is reset.
In other words, if t is the least such time, then

charge(p
∣∣ [0,K]) = $.25 + charge(p

∣∣ [t,K]).
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The net toll charged is clearly less than some constant times the arc length
of p. Also, the total distance traversed on H by r(p) is clearly less than some
constant times the net toll. Therefore, r is a quasi-isometric retraction.

Using the standard principle that in H3 every quasi-geodesic is a bounded
distance from a unique geodesic, it follows that any quasi-isometric param-
eterization of H by H2 extends to give an embedding of a closed disk in
H3 ∪ S1

∞. A quasi-isometric embedding of H2 in H3 is not usually within a
bounded neighborhood of a hyperbolic plane. Rather, it can be character-
ized using quasi-convexity: it is equivalent to a uniformly proper image of
a topological plane whose convex hull has bounded thickness—that is, its
convex hull separates H3 into two components whose boundary components
are each contained in a bounded neighborhood of the other.

It is now fairly easy to establish continuity at infinity for a leaf L of ˜F(s).
Choose a base point ∗ ∈ L. Any geodesic ray h from ∗ on Lmust have infinite
pseudo-Anosov transverse measure for at least one of the two laminations l̃u
or l̃s. This means that h crosses an unbounded family of leaves, that have
eventually empty intersection with any compact set of M̃ . This implies that
the distance of their convex hulls from tends to infinity, which is the same
as saying that their visual diameter tends to 0, as seen from in the optics
of H3. In other words, h satisfies the Cauchy condition for convergence in
H3 ∪ S2

∞. Furthermore, the regions of L that are cut off by the leaves of l̃uu

and l̃ss that h intersects give a neighborhood basis for points at infinity of
L, which shows continuity of the map of H2 ∪ S1

∞ → H3 ∪ S2
∞.

Now consider the case of a compact 3-manifold M which is a compact
core for a non-compact hyperbolic 3-manifold M+ of finite volume. We’ll
first show that the leaves of l̃u and l̃s are quasi-isometrically embedded in
M̃ , and then analyze what this implies.

If H is any leaf of l̃s, we can define a retraction r : M̃ → H just as in the
closed case, mapping each leaf of F̃(s) to its intersection with H, mapping

each leaf of l̃uu to its intersection with H, and extending monotonely in
between. Notice that this recipe maps each (horosphere) component of the

boundary of the universal cover to a strip on H between two leaves of l̃u.
Since every leaf of F̃(s) intersects every boundary component, the image is
not bounded above or below.

The laminations ls, lu, lss, luu are compact, there is an upper bound to the
maximum length of an intersection of a leaf of l̃ss with a gap of l̃u. For any
real number a greater than this maximum length, there is a lower bound
b to the transverse measure of a segment on a leaf of lss measured by a
pseudo-Anosov transverse measure for lu. We can use the same system of
toll-collection as for the compact case. Since M is compact, this system
works, for the same reasons, to show that r is a quasi-isometric retraction
of M̃ to H, hence that H is quasi-isometrically embedded in M̃ .

The cusps of M̃+ create logarithmic shortcuts for certain paths in M , and
we would hear howls of protest if tried to extend our system of tolls to M̃+:
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there is no quasi-isometric retraction of M̃+ to H that extends r. However,
we can use the quasi-geometry of M̃ itself, which is well understood through
the work of several people.

There are several methods that construct a ‘sphere at infinity’ for a group
G, with varying hypotheses; they all tend to agree in the simplest situation of
a word-hyperbolic group. For the present circumstance, we can use a process
for compactifying path-metric spaces of locally bounded geometry, the Floyd
compactification, analyzed by Bill Floyd in [Flo80]. If d is the metric on a
space X, then we can choose a base point ∗, define a function R(x) = d(∗, x).
For any positive non-increasing L1 function f on R+, there is a metric df

obtained by measuring path lengths using the metric d conformally scaled by
f . If balls of bounded radius in d are compact, then the metric completion
X̂f of the metric df is compact. Let Sf (X) denote the sphere at infinity,

Sf (X) = X̂f \X.
For some choices of f , for instance f(R) = R−2, the Lipschitz class of df

only depends on the Lipschitz class of d. For any such an f , it follows easily
that whenever Q : X → Y is a quasi-isometric embedding, then Q has a
continuous extension Q̂f : X̂f → Ŷ f .

It follows that if X is the universal covering of a compact space with
fundamental group G, then Sf (X), up to Lipschitz equivalence, depends
only on G. Define Sf (G) to be this sphere. Floyd showed that when G
is the fundamental group of a hyperbolic n-manifold of finite volume, then
Sf (G) = Sn−1

∞ , and when G is a geometrically finite Kleinian group, then
the limit set of G is the continuous image of Sf (G) under a map which is
usually 1–1, except 2–1 at any rank one cusps of G.

Remark 6.3. Note that the price of Lipschitz functoriality of X̂f is infinite
Hausdorff dimension, in a case such as for X the universal cover of a nega-
tively curved surface. The usual metric for the circle at infinity is obtained as
the completion of H2 using conformal scaling by f = e−R, but the mapping
class groups do not act as Lipschitz maps in the usual metric.

This picture is very relevant to our present situation. As a corollary to the
fact that H ⊂ M̃ is quasi-isometrically embedded, we obtain a continuous
extension

D2 = Ĥf → M̂f = D3,

where f(R) = R−2. This leaves us with the issue of analyzing any non-
injectivity of H at infinity.

Quasigeodesics between points in M̃ do not stay within a bounded dis-
tance of each other; this reflects the fact that the fundamental group of M
is not word-hyperbolic. However, it is relatively hyperbolic, relative to its
cusp groups. This situation has been well analyzed, see for example Rich
Schwartz’s surprisingly strong classification of the quasi-isometry types of
fundamental groups of cusped hyperbolic manifolds ([Sch95] and Benson
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Farb’s theory of relatively automatic groups ([Far94]. If we form the quo-

tient M̄ obtained by collapsing each component of ∂ M̃ to a point, then
M̄ is path-hyperbolic, in the sense that any two quasi-geodesics connecting
two points are within a bounded distance of each other (or the equivalent
property, that a bounded neighborhood of any two sides of a quasi-geodesic
triangle contains the third). Even though metric balls of bounded radius are
non-compact in this metric, it still has the usual sphere at infinity Sf (M̄)
that is identical with the usual hyperbolic sphere at infinity In terms of the
geometry of M̃ , any two quasi-geodesics g and h having the same endpoints,
g is contained in a bounded neighborhood of h, union any horospherical
boundary components that this bounded neighborhood meets. One can
represent a quasi-geodesics in M from x to y by a sequence of geodesic arcs
such that any endpoint other than x and y is perpendicular to a horosphere;
then the next arc takes off from some other point on the horosphere. In
other words, one can think of M̄ as a space that turns a quasi-isometrically
embedded subset of M̃ into a quasi-convex set.

It follows that any infinite quasi-geodesic whose endpoints at infinity are
identical stays within a bounded distance of some horospherical boundary
component.

Now we can simply look at quasi-geodesics on H joining its various points
at infinity. In the downward, spreading direction, we can join two points
using two flow-lines of the pseudo-Anosov flow, connecting them when the
distance between them along leaves of F̃(s) decreases 1. The pseudo-Anosov

transverse measure for l̃u between these flow-lines grows to infinity, which
implies that these ends are not contained in a bounded neighborhood of any
single cusp.

There is a unique point at infinity in the upward, contracting direction.
If H is the face of a cusp gap of l̃s, then a closed loop on H is homotopic to
a cusp; its two endpoints are identified, and all other endpoints necessarily
are distinct. In other words, H makes a figure 8 on S2

∞. We can surger this
cylindrical ‘accidental parabolic’ leaf H/Z into two ‘deliberately parabolic’
pseudospheres H1 and H2, using a saw-blade from of section 5) for the
surgery. The universal covers of the resulting pseudospherical leaves have
completions that are disks.

In the generic case when H is not the face of some cusp gap of l̃s, then in
the upward direction, its l̃s transverse measure to any cusp is non-zero on
any leaf F̃(s), so it tends to infinity as z → ∞. Thus it does not remain in
any bounded neighborhood of any cusp, so it is not identified with any point
at infinity in the downward direction. In this case, Ĥf → S2

∞ is injective.

Now consider a leaf L for F̃(s). Let ∗ be a base point on L, and consider
any geodesic ray h emanating from ∗ in the hyperbolic metric of L.

If h does not tend to a cusp of L, then it crosses infinite transverse pseudo-
Anosov measure for at least one of the two laminations l̃uu or l̃ss. This
implies that the ray enters (and stays in) half-spaces cut off by leaves of
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l̃u or l̃s that are infinitely far from ∗ in M̄ . Since these neighborhoods are
quasi-convex in M̄ and arbitrarily distance, they are arbitrarily small in the
completion; it follows that L converges at infinity and is continuous at the
endpoint of such an h.

If h tends to a cusp, it only traverses a finite total transverse measure
for either l̃u or l̃s. We need a slightly different construction: we can use the
doubly-infinite sequence of leaves of l̃u and l̃s. Small neighborhoods for the

endpoint of h in the domain D2 = ˆ̃Lf can be cut out by using one half-leaf
on each side of h of either l̃uu or l̃ss, together with a portion of a horocycle.
In H3 = M̃+, these map into neighborhoods cut off by two of the deliberately

parabolic half-leaves from l̃u or l̃s that were formed by surgeries, together
with a strip that joins them on a horosphere. To see that sets of this form
shrink in size to the parabolic point, we can use the fact that the system
of all the deliberately-parabolic half-leaves is invariant by the Z + Z that
stabilizes the cusp. In other words, they come from a finite set of parallel
pseudospheres in H3/Z + Z. It follows that all but a finite set of their limit
circles in S2

∞ have size less than a given constant ǫ. The assemblage of
two surger ed half-leaves plus a strip on the horosphere limits at infinity
to a figure 8 formed by combining small wings from two limit figure 8’s (a
non-topologist would be more likely to call them sausages with ends joined)

of leaves of l̃u or l̃s. These wings becoming arbitrarily small. This shows
convergence of D2 = L̂f near a parabolic point on its boundary.

7. Anosov flows and extended convergence groups

Much inspiration for the present study came from Sèrgio Fenley’s inter-
esting analysis of Anosov flows on 3-manifolds ([Fen94].) Fenley developed
a surprisingly strong theory for certain Anosov flows and their associated
foliations. From Fenley’s results, interpreted in terms of slitherings, a beau-
tiful and suggestive picture emerges, a picture that suggests there is much
more that is yet to be understood.

An R-covered foliation is a foliation such that the space of leaves in the
universal cover is homeomorphic to R. An Anosov flow ψt on a 3-manifold
M is called R-covered if its stable foliation Fs is R-covered. Fenley proved
that an Anosov flow of a 3-manifold is R-covered, then it has one of two
types. The first type is the product type, when every leaf of ˜mathcalF u

intersects every leaf of F̃s; this happens if and only if ψ is the suspension of
an Anosov diffeomorphism of T 2.

The second type is that of a skew R-covered Anosov flow. In this case,
M̃ can be mapped surjectively to the diagonal strip |x− y| < 1 in the plane

so that the preimage of any point is a flow-line of ψ̃, the preimage of any
horizontal lines is a leaf of F̃u, and the preimage of any vertical line is a leaf
of F̃s.

The geodesic flow for a hyperbolic surface, illustrated in figure 2, is the
primordial example. In that figure, the surface of the cylinder is divided,
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like a mailing tube, into two bands that wrap diagonally around it. The
flow-lines of ψ̃ are the horizontal lines inside the cylinder; if stable leaves are
projected in one direction, they map to the foliation of one of the bands by
vertical lines, while projecting in the other direction maps each stable leaf
to the diagonal foliation of the other band, where the leaves wrap with slope
1/2. (This is the same 1/2 as in ‘an angle inscribed in a circle is 1/2 the
central angle’). The unstable foliation is obtained by rotating the picture
180◦ about its vertical axis; this gives two foliations of each strip. Either
strip gives a good initial model of a skew R-covered Anosov flow.

Many further examples of skew R-covered Anosov flows that can be con-
structed by Dehn surgery along closed trajectories of Anosov flows. On the
boundary of a regular neighborhood of a closed trajectory, there are dis-
tinguished closed curves, coming from the intersection with the stable and
unstable leaves of the trajectory. It has been known for some time that any
surgery obtained by re-attaching the regular neighborhood by a diffeomor-
phism that preserves these curves (that is, by a power of the Dehn twist
about one of these curves) yields another 3-manifold with an Anosov flow.
Fenley showed that if the original flow is the suspension of an Anosov dif-
feomorphism of T 2, then any surgery that uses consistently-oriented Dehn
twists along any collection of closed orbits yields a skew R-covered exam-
ple. This fits with a construction of Hedlund and Morse (?) in which they
constructed sections for the geodesic flow for any hyperbolic surface in the
complement of certain systems of closed geodesics (in T1(M

2) homeomor-
phic to a multi-punctured torus—in other words, the geodesic flows are ob-
tained by Dehn surgery from suspensions of Anosov diffeomorphisms. This
construction also shows that the geodesic flow for any oriented hyperbolic
orbifold is obtained by surgery from an Anosov suspension.

The simplest case where everything is orientable is the figure eight knot
complement, which fibers over the circle with fiber a punctured torus glued
by

[
2 1
1 1

]
. In [Thu79] it was shown that several of the Dehn fillings give

Seifert fiber spaces. Every manifold obtained in this entire row of Dehn
fillings of the figure knot has a skew R-covered Anosov flow, according to
Fenley’s analysis; the cases that are Seifert fibered cases are examples of
Hedlund’s construction.

Furthermore, Fenley showed that for any skew R-covered Anosov flow,
there is an orientation defined by the structure so that any positive foliation-
consistent surgery along orbits yields another skew R-covered example.

A key theme of [Fen94] is that every automorphism of the double foliation
of the diagonal strip is periodic. For any stable leaf, there is a lowest un-
stable leaf that doesn’t intersect it; for every unstable leaf, there is a lowest
stable leaf that doesn’t intersect it. This gives a canonically-defined equiva-
lence relation on the set of stable leaves that is necessarily preserved by any
automorphism. The quotient of the equivalence relation is a circle. In other
words, Fs is the foliation of a slithering of M around S1—we can use the
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fact that F̃s is equivalent to a product foliation R2 × R (1.4) to check that

the map M̃ → S1 is a fibration.
One can picture this as in 2: glue together two copies of the skew strip,

with stable and unstable directions interchanged, to form a cylinder. The
equivalence classes correspond to the circle’s worth of vertical lines—the
intersection of one vertical line with one of the strips describes a set of
equivalent stable leaves. The gluing map, which interchanges the two sides
of the strip by going either straight up or straight to the right, we may as
well call

√
Z, since

√
Z ◦

√
Z represents Z. Here’s what the picture says so

far when translated further into the logic medium:

Proposition 7.1. Let ψ be a skew R-covered Anosov flow on a 3-manifold
M . Then there are two slitherings Ss and Su of M around S1, where
F(Ss) = Fs, and F(Su) = Fu.

The circle at infinity bundle for the leaves of Fs is isomorphic to the slith-
ering circle bundle for Fu. and vice-versa. The isomorphism is obtained by
gluing two copies of the closure of the skew strip using

√
Z, and attaching it

equivariantly to M̃ to form a solid cylinder. When the ‘short’ leaves of one
of the strips are collapsed, the ‘long’ leaves of the second strip join to become
the circles at infinity for one of the foliations, while the ‘short’ leaves of the
second strip join to become lines representing the quasi-isometric identifica-
tion of the leaves at infinity.

Proof. Since the strip parameterizes flow lines of ψ̃, and each of these flow
lines is R, we can sew two copies of the open strip to M̃ , each point attached
to one of the two ends of its flow line, and we can adjoin lines to serve as
common edges for the two strips. A leaf of an Anosov flow automatically
looks like the hyperbolic plane foliated by geodesics emanating from one
point, and the collapsing maps of the strips just describe this geometry.

The only actual issue is the comparison between the identification of cir-
cles at infinity according to bounded distances between two geodesic rays
and the identification defined using the skew-Anosov structure. Given two
nearby leaves L1 and L2 of F̃s, the matching is forced along most of their
circles at infinity, wherever a leaf of F̃u meets both L1 and L2. Consider the
cylinder formed by collapsing the short leaves of one of the strips, which is
like the core of a roll of paper towels. We know that the horizontal circles are
circles at infinity for the leaves, and we know that the vertical foliation gives
the correct identification of the circles everywhere except possibly on the
boundary of the strip /Z. But it is clear (and easy to prove) that the only
extension of the vertical-line foliation across the missing line is the foliation
by vertical lines.

The four actions (slitherings and leaves at infinity of the two foliations),
which the proposition says are actually only two different actions, are in fact
isomorphic to each other, since

√
Z conjugates one action to the other. An-

other way to rephrase the picture so far is in terms of the space P of ordered
pairs of distinct points on a circle. P is homeomorphic to an annulus, and P̃
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is the diagonal strip, with two foliations coming from the two coordinates.
An element of P represents a geodesic in the hyperbolic plane, and we can
think of π1(M) as acting on the space of geodesics.

7.1. Extended convergence groups. Now it’s time for a third folia-
tion Fp to enter the picture. The points on a geodesic us in H2 can be
parametrized in terms of a third element p ∈ S1

∞ that counterclockwise from
s: the foot of the perpendicular from p to us gives a 1 − 1 correspondence.

Let T be the space of counterclockwise ordered triples of distinct points
on S1. We can complete T by admitting degenerate cases when some or
all the elements of the triple coincide; however, we remember their limiting
order, so that when all three clumping in the order usp we distinguish it
from clumping in the order spu, even when the points clump at the same
place. When we do this, we obtain a solid torus T̄ whose boundary is divided
by the three (1, 1) curves into three annuli.

Definition 7.2. A convergence group is a subgroup of Homeo+ S
1 that

acts properly discontinuously on T , where Homeo+ denotes the orientation-
preserving subgroup.

An extended convergence group is a subgroup of the universal covering

group ˜Homeo+ S1 (consisting of periodic homeomorphisms of R) that acts

properly discontinuously on ˜̄T .

We can coordinatize T̃ , when convenient, as the set of ordered triples of
real numbers (u, s, p) where u < s < p < u+ 2π.

Definition 7.3. A total foliation for an n-manifold is a collection of n codi-
mension one foliations, locally equivalent to the n foliations of Rn parallel
to the coordinate axes.

Detlef Hardorp ([Har80]) proved that every 3-manifold admits a total
foliation. His construction makes free use of Reeb components; as far as I
know, there has been little investigation of taut total foliations, that is, total
foliations such that the three codimension one foliations are taut.

The annulus D and the solid torus T come equipped with total foliations.
The group of automorphisms of the total foliation of D or of T is isomorphic
to the group of homeomorphisms of S1. Similarly, the groups of automor-

phisms of the total foliations of D̃ and of T̃ are isomorphic to H̃omeo(S1).

For any extended convergence group Γ, the three-manifold T̃ /Γ comes with
a built-in taut total foliation.

Here is a collection of basic properties of extended convergence groups:

Proposition 7.4. Let Γ be an extended convergence group, and let M =
T̃ /Γ be its quotient three-manifold.

i. M has three slitherings Su, Ss and Sp around S1 whose foliations form
the taut total foliation of M . The cartesian product Su × Ss × Sp :

M̃ → S1 × S1 × S1 is the covering map M̃ → T ⊂ T 3.
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ii. There is a homeomorphism Z1/3 : M̃ → M̃ that commutes with deck
transformations of M̃ → M , cyclically permutes the slitherings and
whose cube acts as Z on the space of leaves of all three slitherings.

iii. The leaves of the three total foliations are of hyperbolic type, that is,
there is a Riemannian metric on M that restricts to a hyperbolic metric
on the leaves of one of the slitherings.

iv. An element of π1(M) that is space-like for one of the slitherings is
space-like for all three. The action of any space-like element of π1(M)
on S1 (the circle where the three points lie) either has one fixed point
(parabolic case), or has two fixed points where one is attracting and
one repelling (hyperbolic case). If M is compact, then the parabolic
case does not occur.

v. If M is compact, or if it is the interior of a compact manifold to which
the slitherings extend, then the circle at infinity for the leaves of any of
the three foliations can be identified with the original S1 (of the triples)
so that matches the actions of π1(M).

vi. The completion of M̃ by the circles at infinity for the leaves of F̃(Ss) is
homeomorphic to the solid cylinder obtained from the triangular prism
˜̄T by collapsing its two faces u = s and s = p along the lines where s
is constant.

Proof. Part (i.) is really a rephrasing of the definition of an extended con-
vergence group.

Part (ii.) comes from the symmetry of the three elements of the triple on
S1. In terms of the coordinates (u, s, p) ∈ R3 where u < s < p < u+2π, the
map is (u, s, p) → (s, p, u+ 2π).

Part (iii.) is almost vacuous when M is non-compact unless further con-
ditions were put on the metric: for a foliated 3-manifold where no leaf is
contained in a compact subset, it’s easy to modify the metric near infinity to
make all leaves of hyperbolic type. When M is compact, the cocompactness
of the action of Γ on T̃ implies that any pair of points u < s < u + 2π in
R can be that squeezed arbitrarily close together by π1(M). No measure
on R can possibly be invariant under this action. From Candel’s theory of
uniformization of surface laminations ([Can93]), it follows that the leaves of
the foliations are conformally hyperbolic, for otherwise there would be an
invariant measure.

For part (iv.), the homeomorphism Z1/3 that commutes with the action
of π1(M) shows that space-likeness is equivalent for the three foliations.

The action of a space-like element of ˜HomeoS1 on R is to fix all points
that cover its fixed points on S1; a space-like element that fixes a three or
more points on S1 therefore fixes some element of T̃ , and cannot be part of

a properly discontinuous group. (Note that all elements of ˜HomeoS1 have

infinite order. In particular, the elements of ˜HomeoS1 that cover torsion
elements of HomeoS1 are time-like and of infinite order).
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A little further thought shows that if γ ∈ Γ is a space-like element with
two fixed points a and b, then iterates of γ take all points on the circle
except for one of the points, say b, toward the other fixed point (a) (and
γ−1 does the reverse). Otherwise, γ would map the two intervals between
a and b in the same sense, say counterclockwise, and the action of γ on R

would be similar, with γ(x) ≥ x. In this situation, one can find a compact

arc in T̃ whose images under iterates of γ get hung up in a compact set, and
never escape to the boundary: if you think of T̃ as triples of real numbers
contained in an interval of size less than 2π, then keep the two outside points
above and below one of the fixed points of γ, while letting the third point
cross the fixed point. This shows that every space-like element is either of
hyperbolic or of parabolic type.

When Γ is cocompact, we can rule out parabolic elements more reasoning
of a similar nature. Indeed, suppose there were a parabolic element γ of
a cocompact extended convergence group Γ. Let a ∈ R be a fixed point,
let a < b < a + 2π be another point, and let c = γ(b). Cocompactness
would imply that some element of Γ would take b and c close together
in (a, a + 2π) while keeping them keeping them far from a. Let γi be a
sequence of conjugates of γ by such transformations. The sequence γi is
necessarily unbounded in Γ; proper discontinuity therefore requires that for
any two compact sets K and L in T̃ , γi(K) is eventually disjoint from L. But
the sequence γi has qualitative behavior very similar to a homeomorphism
with two fixed points but the wrong dynamics—an arc of triples can be
constructed that gets hung up in a compact subset of T̃ .

To establish part (v.), assume first that M is closed, and let L be a leaf

of F̃(Ss). By proposition 3.5) Γ contains non-trivial space-like elements.
Thus, we can compare the two circles S1 (containing the original triples)
and S1

∞(L) by looking at fixed points of space-like elements of Γ, using

the fact that all leaves are F̃(Ss) are quasi-isometrically equivalent. If γ is a
space-like element, then it fixes some leaf L′ in the slab between L and Z(L),
and it necessarily acts as a hyperbolic element on this leaf (using the fact
there is a lower bound to injectivity radius of leaves.) Any quasi-geodesic
invariant by γ converges in one direction to the attracting fixed point of γ,
in the other direction to the repelling. We can conjugate any space-like γ
by any element of π1(M); it is an easy exercise to see that the fixed points
of conjugates must be dense in S1

∞(L).
The attracting fixed points of space-like elements on S1 and S1

∞(L) in-
herit circular orderings which can be reconstructed from the topology of M
by looking at orientation information coming from intersections of closed
geodesics with annuli in M illustrated in figure 8 and used (without ori-
entations) for the construction of the linking series Λ. This gives a 1-1
circular-order-preserving identification of a dense set of points on the two
circles, which therefore extends to a homeomorphic identification.

When M is the interior of a compact manifold to which the slitherings ex-
tend, as usual we define the quasi-isometry type of leaves by gluing horoball
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quotients to the torus boundaries. The easiest argument in this case is to use
the cusps on leaves to define the identification of the two circles. Cusps are
indelibly printed on each leaf as components of its intersection with a neigh-
borhood of infinity, so the circular ordering has an immediate topological
(not just quasi-isometric) definition.

Part (vi.) is a reworking of part (v.) to picture it in terms of T̄ and B̃arT .
Given a space-like element γ ∈ Γ, the effect of applying iterates of γ to an
element of T is to take at least two of the three elements of the triple to the
attracting fixed point of γ on S1. Therefore, for any quasi-geodesic in T̃ that
is contained between two leaves L and Z(L) and is invariant by γ has limit
set contained in the subset of T̄ where at least two of the three coordinates
have value equal to one of the points in R that covers the convergent fixed
point of γ on S1. Limit sets for space-like elements are dense; possible limits
of other quasi-geodesics are similar, and can be deduced either from how they
are sandwiched between group-invariant quasi-geodesics. (There is another
approach for (v.) and (vi.) that perhaps helps clarify the picture. One can

look directly at space-like quasi-geodesics in a z-bounded slab of M̃ , and use
the sequence of fundamental domains that they intersect. This sequence is
labeled by a sequence of elements of Γ, which a space-like quasi-geodesic
for the group. It is not hard to see that the behavior of this sequence is
similar to the special case of iterates of a single space-like element: for any
particular large i, all of S1 goes near a particular ‘attracting’ point, all of
S1 except a short interval Ji; however, the intervals Ji are not located in
any consistent place.)

When we restrict to a leaf where s is constant, the two faces u = s and
s = p therefore represent a single point at infinity for L, while the remaining
face of the prism sweeps transversely across the possible limit sets of closed
space-like quasi-geodesics, filling out the rest of the circle.

Corollary 7.5. The quotient of T̃ by any orientation-preserving cocompact
extended convergence group is a 3-manifold with a total foliation such that a
vector field tangent to the intersection of any two of the three codimension
one foliations is a skew R-covered Anosov flow.

Conversely, every skew R-covered Anosov flow has this form. If s is a
slithering of a closed orientable 3-manifold M around S1, then F(s) is the
stable foliation of an Anosov flow if and only if the associated representation

of π1(M) in H̃omeo(S1) is a cocompact extended convergence group. In that

case, M = T̃ /π1(M).

Proof. The logic is easy, based on what we know. Given a skew R-covered
Anosov flow ψ on a 3-manifold M , map M̃ to T̃ , the map to D̃ to to
give two of the three coordinates u(x) and s(x) for x ∈ M̃ . For the third

coordinate, we choose hyperbolic structures for the leaves of F̃s, and let
p(x) be the leftward endpoint on S1

∞ of the perpendicular to the ψ̃-flow line

through x, in the geometry of the F̃s-leaf of x. The orientation information
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comes because of the direction of skewing: in other words, the strip D̃ has
an orientation, and the orientation of the flow gives an orientation for M .
On any particular flow line of ψ̃, there is an interval’s worth of choices
for p, which is the right information to determine a point on the fiber of
the map T̃ → D̃ that forgets p. Note that this coordinatization is not
smooth; however, smoothness is not a critical issue when we have the strong
structure provided by a total foliation. The action of π1(M) on T̃ is properly
discontinuous and cocompact, because we have produced an isomorphism
to the action of π1(M) by deck transformations, so π1(M) is an extended
convergence group.

If s is a slithering of M around S1 and if F(s) is an Anosov foliation,
it is an R-covered Anosov foliation, so it follows from [Fen94] that it is
skew R-covered, and therefore it acts on its space of leaves as an extended
convergence group.

What remains is to establish that the quotient of a cocompact extended
convergence group Γ has Anosov flows as stated. Given our understanding
of the circles at infinity of leaves, we can see this just by looking. If we look
at two of the foliations of T̃ , say the foliations where s is constant and where
u is constant, then the leaves of the 1-dimensional foliation s = u = constant
restricted to a leaf s = constant converge to a single point in one direction
(because of collapsing of two faces of the prism), and they converge in the
opposite direction on a leaf u = constant. It is easy to see that convergence
has to be exponentially fast by looking at a hyperbolic metric for the leaves
of one of the foliation, and applying general considerations of compactness:
therefore, a vector field tangent to this foliation is an Anosov flow.

Remark 7.6. Notice that if we were to collapse all three faces of the prism
˜̄T along their ‘short’ directions, the boundary would collapse to a circle and
T̄ would collapse to an uncoated lens. However, if Γ is not a convergence
group, then the quasi-isometric distance between leaves at different levels of
T̃ goes to infinity with height, so just like the original prism, this lens must
be interpreted used cautiously for understanding the quasi-geometry of T̃ . If
the foliations are transversely pseudo-Anosov, a transverse pseudo-Anosov
flow φ gives a connection that can be used to define a compactification of
T̄ , by re-mapping the interior of the prism to a compact triangular prism,
fixing one leaf s = constant, then mapping flow lines of φ to parallel lines
that terminate at parallel end faces. Now when we collapse the three short
directions of the rectangular sides of the prism, we get a coated lens (with its
faces). As quasi-geodesics, the stable leaves of the transverse pseudo-Anosov
flow all collapse at the top of the lens, and the unstable leaves all converge at
the bottom. Collapsing the leaves of these foliations on the top and bottom
of the lens yields a ball; the rim of the lens becomes the sphere-filling curve
of section 6.
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Figure 10. The uni-
versal cover of a mani-
fold with a skew R-covered
Anosov foliation has an

immersion in T̃ ∗(H2) that
is invariant by the deriv-
ative action of a cocom-
pact properly discontinu-
ous subgroup of diffeomor-
phisms of the hyperbolic
plane. In any fiber, the im-
mersion would look some-
thing like this. There is
a 1-parameter family of
coaxial ellipses that de-
scribe the conformal struc-
ture of each leaf. The im-
mersion is tangent to the
unit ellipse for its hyper-
bolic metric.

Here is another representation for these same manifolds, adding a twist of
contact geometry, whose primordial example is a cotangent sphere bundle (or
unit cotangent bundle, if one prefers to use a metric). The steady rotation
of flow-lines of the Anosov flow, as one goes transversely to the leaves of Fs,
suggest a contact structure. This can be used to compile several structures
all into one picture:

Theorem 7.7. The action of an extended convergence group on T̃ is con-

jugate to the action of a subgroup of D̃iff+(H2) of uniformly Lipschitz dif-

feomorphisms on T̃S
∗
(H2), where the action is the universal cover of the

derivative. Conversely, any subgroup of the universal covering of the group
of uniformly Lipschitz diffeomorphisms of H2 which acts properly discontin-

uously on T̃ S
∗
(H2) is conjugate to an extended convergence group acting on

T̃ .
Furthermore, if M is a closed 3-manifold with a skew R-covered Anosov

foliation, then M̃ can be immersed in T ∗(H2) (probably not very smoothly),
in a way that is invariant by the derivative of a representation of π1(M) in

H̃omeo(H2).

Proof. Theorems 5.3 and 5.8 can be interpreted in the context of extended
convergence groups, in the following form: Given an extended convergence
group, we choose one of the three (isomorphic) slitherings, and apply theo-
rem 5.8 or 5.3, to obtain a flow φ transverse to the foliation of the slithering.
For present purposes, we just need a flow that serves as a connection for the



THREE-MANIFOLDS, FOLIATIONS AND CIRCLES I 55

slithering, so if necessary, we perturb φ to a flow φ′ that is a smooth and
remains a connection.

We can now represent Z by the homeomorphism having the required ac-
tion on leaves of M̃ , and isotopic to the identity along flow lines of φ′. This
homeomorphism is likely not to be smooth, but it acts smoothly on the space
of flow-lines. This gives a representation of π1(M) as a group of homeomor-
phisms of the universal cover of any leaf. We can lift this representation to
the universal covering group of the group of homeomorphisms of the leaf,
using the homotopy information that comes from the slithering, since the
action on cotangent circles is the same up to homotopy with the action on
the circle at infinity, which action is equipped with a lifting to an action on
R.

8. Preview and questions

The circle at infinity for the leaves of a slithering is a particularly well-
behaved instance of a general construction for a universal circle-at-infinity
for the leaves of any taut foliation of a 3-manifold. In general, the universal
circle can be thought of as defined by a foliation transverse to the fibers
of TS(F). It is not homeomorphic to the circles at infinity defined by the
geometry of individual leaves. Instead, it is a collation of the circles for all
leaves into one master circle: the circle at infinity for any particular leaf is
obtained as a monotone (but not strictly monotone) image of the master
circle. These universal circles will be constructed and analyzed in [Thu98]
and they will be used to construct genuine essential laminations transverse
to the leaves of any taut foliation of an atoroidal 3-manifold.

Harmonic measures for foliations constructed by Garnett ([Gar83]) are
very helpful in understanding the geometry of leaves of taut foliations. They
can be used to show that on any leaf L, in ‘most’ directions at infinity (in
some sense, where the exact meaning of ‘most’ depends on L) the holonomy
keeps a definite packet of nearby leaves within a bounded distance, and under
many circumstances, makes them converge toward L. Anosov foliations are
a particularly clear instance of this, where on any leaf, in all directions at
infinity except one, the flow-lines diverge, but nearby leaves converge. The
general picture is similar to this, except that there is often a dense set of
exceptional directions where nearby leaves diverge. The exceptional set of
directions has measure 0 in any foliation such that every leaf is dense.

There has been a long history of a need for a widely-applicable geomet-
ric theory of universal Teichmüller space, that is, the space of hyperbolic
structures on D2 rel boundary, subject to some constraint on the geometry.
This has been a key issue in studying iterated rational maps of the Rie-
mann sphere, and it is also a key issue in the topology of three-manifolds.
Of course, there are also many interesting unresolved issues concerning the
geometry of ordinary finite-dimensional Teichmüller spaces.

I believe that three-manifolds that slither around S1 provide a nice attain-
able testing ground, for refining some of our understanding about hyperbolic
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geometry and Teichmüller geometry. In general, given a compact space with
a 2-dimensional lamination that has a hyperbolic leaves, one can study the
Teichmüller space for the leaves—what are the possible hyperbolic metrics,
up to isometry?

Associated with any lamination with 2-dimensional hyperbolic leaves,
there is an associated 3-dimensional lamination with 3-dimensional hyper-
bolic leaves, modeled on H3 ⊃ H2. The 3-dimensional laminations have
interesting deformation spaces of their own; these are generalization of quasi-
Fuchsian groups.

In the case of a lamination λ embedded in a 3-manifold M3, one can go
further, and incorporate hyperbolic structures on the gaps into a foliation
of 4-manifold N4 with 3-dimensional hyperbolic leaves; M3 is embedded in
N4 as a spine, in a way that leaves of the foliation of N4 intersect M3 as
the leaves and gaps. (One should first blow up any isolated leaf of λ to a
band of parallel leaves, to make sure that N4 will be Hausdorff.)

There are fairly natural ways to define a relaxation process on the de-
formation space of the 3-dimensional hyperbolic foliation, to try to bring
nearby leaves isometrically closer. Actually, similar processes can be defined
on the leaves of a foliated 3-manifold; some of these processes conjecturally
should tend to a limit that is analogous to a geodesic in one of the metrics
for Teichmüller space, yielding a transverse pseudo-Anosov flow under fairly
general circumstances. (This would generalize ‘curve shortening’ as carried
out by Bers in the special case of a surface fibration over S1, [Ber78].)

I think it is likely that a relaxation process can be defined for the three-
dimensional hyperbolic foliations that converges to give a geometric decom-
position for M , usually by converging to a foliation where all leaves are
actually isometric. What appears to happen is that as that an appropriate
relaxation process makes the leaves ‘rotate’ in H3× Teichmüller space, so
that the up and down H3-directions turn toward neighboring leaves above
and below, ultimately converging to be isometric if the lamination is irre-
ducible in the sense of not admitting transverse essential tori.

The case of a lamination consisting of a finite number of incompressible
surfaces is simply a translation of a Haken manifold into this language, and
the proofs for Haken manifolds show that the relaxation process converges
in this case.

The next case will be 3-manifolds that slither around S1. I am planning a
paper to prove geometric convergence of a relaxation process defined in the
pseudo-Anosov case by (Z,Z−1). A key ingredient is that as one iterates,
the quasi-isometric distance between leaves never increases, just as the ‘skin-
ning maps’ decrease the Teichmüller metric in the Haken situation. In fact,
because of the uniformness of the quasi-geometry of leaves in this situation,
Curt McMullen’s proof of the Theta conjecture shows that distances between
leaves actually contracts. Geometric estimates similar to previous cases will
imply geometric convergence, yielding a hyperbolic structure for M3. This
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scheme is a generalization of the construction for hyperbolic structures on
mapping tori of pseudo-Anosov homeomorphisms.

I think it likely that further study will eventually show convergence (of
some version of this process) in generality, for 3-manifolds with taut folia-
tions or essential laminations.

Even more speculatively, the foliation pictures suggest a similar scheme
that possibly could eventually yield a good natural proof for the general ge-
ometrization conjecture. The idea is to start with the unit tangent bundle,
in some Riemannian metric, and turn the fibers into 3-dimensional hyper-
bolic spaces. The aim is to look for a complete flat connection transverse
to the fibers; the affine connection for the Riemannian metric gives a first
approximation, but it is not a complete connection. In any case, the H3

foliation has a deformation theory parametrized by quasiconformal struc-
tures on its spheres. A relaxation process for this foliation can be defined,
by making the conformal structure on the sphere at infinity evolve toward
the shape of the spheres for its neighbors in the appropriate direction. The
idea is something like ripples in a pond when a few equal-sized pebbles are
dropped. The waves spread, perhaps becoming distorted from their initial
conditions if the pond is shallow and irregular, but the wavefronts stay close
to each other.

Three-manifolds with essential laminations are a special case of this gen-
eral pebble-in-the-pond picture: 2-dimensional surfaces in a 3-manifold al-
low one to find a connection for the tangent H3-bundle that is integrable
in two out of three directions, using Candel’s uniformization; in this case,
relaxation needs to happen in is only one more direction.

There have been many powerful applications of foliations and laminations
to analyzing 3-manifolds Dehn surgeries on knots. The phenomena in this
paper suggest that there ought to be a theory which would connect surgeries
along closed orbits of transverse pseudo-Anosov flows to rotation numbers
and to the Milnor-Wood inequalities. One way to frame it is this: most
surgeries along closed orbits of a pseudo-Anosov flow yield manifolds with
pseudo-Anosov flows. For which surgeries is there a transverse foliation?
For which surgeries does the flow uniformly regulate some transverse folia-
tion? It seems a reasonable conjecture that every pseudo-Anosov flow is at
least finitely covered by one that admits a transverse foliation. David Fried
([Fri83]) showed that any Anosov or pseudo-Anosov flow can be obtained
by some Dehn surgery along flow lines of the suspension of a pseudo-Anosov
homeomorphism of a surface. To do it, what is required is a section in the
complement of some closed orbits, generalizing the Hedlund-Morse construc-
tion. A question related to generalizing the Milnor-Wood inequality is to
describe the minimal collections of orbits that need to be removed for the
flow to admit a section.



58 WILLIAM P. THURSTON

There are further related questions about tight contact structures: when is
there a contact structure transverse to a flow, or tangential to a flow? These
questions all seem closely linked. It would be nice to have a general theory
of Homeo(R)-connections transverse to flows, or at least, for flows coming
from slitherings of a 3-manifold over a surface; the ‘nicest’ cases are when
the connection has positive or negative curvature, which gives a contact
structure, or zero curvature, which gives a foliation. One can similarly
look for analogues of the canonical 1-form in the cotangent bundle, that
is, flows with plane fields (possibly with singularities) that twist positively,
negatively, or not at all. See [ET97] for a discussion of related topics.

Similarly, what happens for surgeries along the leaves of a foliation (or of
an essential lamination?) Is there a generalization of Fenley’s condition to
some class of surgeries along the leaves of a 3-manifold that slithers around
S1?

Given a foliation transverse to the fibers of M3 × S1, is there some finite
sheeted covering such that the pull-back bundle admits a transverse section
(preferably defining a slithering)? The special case of the trivial question is
the question of whether the three-manifold virtually fibers over S1. It might
be easier to do this when the foliated bundle is not trivial.

Is every hyperbolic three-manifold group isomorphic to a subgroup of
Homeo R? This is beginning to seem likely.

In certain mysterious ways, foliations and essential laminations are quite
similar to hyperbolic structures. Either kind of structure gives a positive and
widely applicable criterion to show a manifold has many ‘nice’ properties
including infinite fundamental group. On a surface, measured laminations
can be thought of as the rank one limit of a conformal structure. A conformal
class of indefinite metrics is a Lorentz cone structure. The canonical form
for a diffeomorphism of a surface in essence produces one of the three types
of conformal structures invariant by the diffeomorphism. Another way to
think of the relationship is that hyperbolic structures are the same thing
as grous acting on the complex 1-manifold CP1 that are ‘taut’ in a certain
sense. This is the complex version of groups that act on RP1. Foliations
give groups acting on the circle, with many nice geometric properties.

One can only hope that some day, all these different structures and con-
structions will fit together into a single coherent picture.
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