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1 INTRODUCTION

These lecture notes introduce into the phenomenological and qualitative theory of superconductiv-
ity. Nowhere any specific assumption on the microscopic mechanism of superconductivity is made
although on a few occasions electron-phonon interaction is mentioned as an example. The theoretical
presuppositions are exclusively guided by phenomena and kept to a minimum in order to arrive at
results in a reasonably simple manner.

At present there are indications of non-phonon mechanisms of superconductivity, yet there is no
hard proof up to now. The whole of this treatise would apply to any mechanism, possibly with
indicated modifications, for instance a symmetry of the order parameter different from isotropy which
has been chosen for the sake of simplicity.

This is a primer. For each considered phenomenon, only the simplest case is treated. References
are given basically to the most important seminal original papers. Despite the above mentioned
strict phenomenological approach the technical presentation is standard throughout, so that it readily
compares to the existing literature.1

More advanced theoretical tools as field quantization and the quasi-particle concept are introduced
to the needed level before they are used. Basic notions of Quantum Theory and of Thermodynamics
(as well as of Statistical Physics in a few occasions) are presupposed as known.

In Chapter 2, after a short enumeration of the essential phenomena of superconductivity, the
London theory is derived from the sole assumption that the supercurrent as an electrical current is
a property of the quantum ground state. Thermoelectrics, electrodynamics and gauge properties are
discussed.

With the help of simple thermodynamic relations, the condensation energy, the thermodynamic
critical field and the specific heat are considered in Chapter 3.

In Chapter 4, the Ginsburg-Landau theory is introduced for spatially inhomogeneous situations,
leading to Abrikosov’s classification of all superconductors into types I and II. The simplest phase
diagram of an isotropic type II superconductor is obtained in Chapter 5.

The Josephson effects are qualitatively considered on the basis of the Ginsburg-Landau theory in
Chapter 6. Both, d.c. and a.c. effects are treated.

The remaining four chapters are devoted to the simplest phenomenological weak coupling theory of
superconductivity on a microscopic level, the BCS theory, which provided the first quantum theoretical
understanding of superconductivity, 46 years after the experimental discovery of the phenomenon. For
this purpose, in Chapter 7 the Fock space and the concept of field quantization is introduced. Then,
in Chapter 8, the Cooper theorem and the BCS model are treated with occupation number operators
of quasi-particle states which latter are introduced as a working approximation in Solid State Physics.
The nature of the charged bosonic condensate, phenomenologically introduced in Chapter 2, is derived
in Chapter 9 as the condensate of Cooper pairs. The excitation gap as a function of temperature is
here the essential result. The treatise is closed with a consideration of basic examples of the important
notion of coherence factors.

By specifying more details as lower point symmetry, real structure features of the solid (for instance
causing pinning of vortex lines) and many more, a lot of additional theoretical considerations would
be possible without specifying the microscopic mechanism of the attractive interaction leading to
superconductivity. However, these are just the notes of a one-term two-hours lecture to introduce
into the spirit of this kind of theoretical approach, not only addressing theorists. In our days of lively
speculations on possible causes of superconductivity it should provide the newcommer to the field
(again not just the theorist) with a safe ground to start out.

1Two classics are recommended for more details: J. R. Schrieffer, Theory of Superconductivity, Benjamin, New York,
1964, and R. D. Parks (ed.), Superconductivity, vol. I and II, Dekker, New York, 1969.
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Figure 1: Resistance in ohms of a specimen of mercury versus absolute temperature. This plot by
Kamerlingh Onnes marked the discovery of superconductivity. (Taken from: Ch. Kittel, Introduction
to Solid State Physics, Wiley, New York, 1986, Chap. 12.)

2 PHENOMENA, LONDON THEORY

Helium was first liquefied by Kammerling Onnes at Leiden in 1908. By exhausting the helium vapor
above the liquid the temperature could soon be lowered down to 1.5K.

Shortly afterwards, in the year 1911, it was found in the same laboratory1 that in pure mercury
the electrical resistance disappeared abruptly below a critical temperature, Tc = 4.2K.

Deliberately increasing electron scattering by making the mercury impure did not affect the phe-
nomenon. Shortly thereafter, the same effect was found in indium (3.4K), tin (3.72K) and in lead
(7.19K). In 1930, superconductivity was found in niobium (Tc = 9.2K) and in 1940 in the metallic
compound NbN (Tc = 17.3K), and this remained the highest Tc until the 50’s, when superconductivity
in the A15 compounds was found and higher Tc-values appeared up to Tc = 23.2K in Nb3Ge, in 1973.

These materials were all normal metals and more or less good conductors.

In 1964, Marvin L. Cohen made theoretical predictions of Tc-values as high as 0.1K for certain
doped semiconductors, and in the same year and the following years, superconductivity was found in
GeTe, SnTe (Tc ∼ 0.1K, ne ∼ 1021cm−3) and in SrTiO3 (Tc = 0.38K at ne ∼ 1021cm−3, Tc ∼
0.1K at ne ∼ 1018cm−3).

In 1979, Frank Steglich discovered superconductivity (Tc ∼ 0.6 K) in CeCu2Si2, a magnetically
highly correlated compound of a class of solids which later got the name “heavy fermion metals”. In
the early 80’s, superconductivity was found in several conducting polymers as well as in other heavy
fermion metals like UBe13 (Tc ∼ 1K in both cases). The year 2000 Nobel price in Chemistry was
dedicated tho the prediction and realization of conducting polymers (synthetic metals) in the late
70’s.

1H. K. Onnes, Commun. Phys. Lab. Univ. Leiden, No124c (1911); H. K. Onnes, Akad. van Wetenschappen
(Amsterdam) 14, 818 (1911).
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Figure 2: The evolution of Tc with time (from C. W. Chu, Superconductivity Above 90K and Beyond
in: B. Batlogg, C. W. Chu, W. K. Chu D. U. Gubser and K. A. Müller (eds.) Proc. HTS Workshop
on Physics, Materials and Applications, World Scientific, Singapore, 1996.).

In 1986, Georg Bednorz and Alex Müller found superconductivity in (La,Sr)2CuO4 with Tc = 36K,
an incredible new record.1

Within months, Tc-values in cuprates were shooting up, and the record at ambient pressure is now
at Tc ∼ 135K.

In the spring of 2008, a new fascinating family of superconductors came into focus containing an
iron pnictide/chalcogenide layer of anti-PbO structure as the superconducting component, so far with
transition temperatures up to about 50 K.

2.1 Phenomena

(a) Zero resistance2 No resistance is detectable even for high scattering rates of conduction elec-
trons. Persistent currents magnetically induced in a coil of Nb0.75Zr0.25 and watched with NMR
yielded an estimate of the decay time greater than 105 years! (From theoretical estimates the decay

time may be as large as 101010

years!)

(b) Absence of thermoelectric effects3 No Seebeck voltage, no Peltier heat, no Thomson heat
is detectable (see next section).

(c) Ideal diamagnetism χm = −1. Weak magnetic fields are completely screened away from the
bulk of a superconductor.

(d) Meissner effect4 If a superconductor is cooled down in the presence of a weak magnetic field,
below Tc the field is completely expelled from the bulk of the superconductor.

1J. G. Bednorz and K. A. Müller, Z. Phys. B64, 189 (1986).
2J. File and R. G. Mills, Phys. Rev. Lett. 10, 93 (1963).
3W. Meissner, Z. Ges. Kälteindustrie 34, 197 (1927).
4W. Meissner and R. Ochsenfeld, Naturwiss. 21, 787 (1933).
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(e) Flux quantization1 The magnetic flux through a superconducting ring is quantized and con-
stant in time. This phenomenon was theoretically predicted by F. London in 1950 and experimentally
verified 1961.

2.2 London theory2

Phenomena (a) and (b) clearly indicate that the supercurrent (at T = 0) is a property of the quantum
ground state:

There must be an electrically charged (charge quantum q), hence complex bosonic field
which condenses in the ground state into a macroscopic amplitude:

nB = |Ψ|2, (1)

where nB means the bosonic density, and Ψ is the corresponding field amplitude.
Since the field is electrically charged, it is subject to electromagnetic fields (E,B) which are usually

described by potentials (U,A):

E = −∂A

∂t
− ∂U

∂r
, (2a)

B =
∂

∂r
× A. (2b)

In this chapter E and B are the total fields locally seen.
The field amplitude should obey a Schrödinger equation

1

2mB

(
~

i

∂

∂r
− qA

)2

Ψ + qUΨ =
(
E − µB

)
Ψ, (3)

where the energy is reasonably measured from the chemical potential µB of the boson field, since what
is measured in a voltmeter is rather the electrochemical potential

φ = µB + qU (4)

than the external potential U , or the effective electric field

Eeff = −∂A

∂t
− 1

q

∂φ

∂r
. (5)

As usual in Quantum Mechanics, −i~∂/∂r is the canonical momentum and (−i~∂/∂r − qA) = p̂m is
the mechanical momentum.

The supercurrent density is then

js = q
pm

mB
nB =

q

mB
ℜ
(
Ψ∗p̂mΨ

)
= − iq~

2mB

(

Ψ∗ ∂

∂r
Ψ − Ψ

∂

∂r
Ψ∗
)

− q2

mB
Ψ∗ΨA. (6)

It consists as usual of a ‘paramagnetic current’ (first term) and a ‘diamagnetic current’ (second term).3

In a homogeneous superconductor, where nB = const., we may write

Ψ(r, t) =
√
nBe

iθ(r,t), (7)

and have

Λjs =
~

q

∂θ

∂r
− A, Λ =

mB

nBq2
. (8)

1B. S. Deaver and W. M. Fairbank, Phys. Rev. Lett. 7, 43 (1961); R. Doll and M. Näbauer, Phys. Rev. Lett. 7,
51 (1961).

2F. London and H. London, Proc. Roy. Soc. A149, 71 (1935); F. London, Proc. Roy. Soc. A152, 24 (1935); F.
London, Superfluids, Wiley, London, 1950.

3These are formal names: since the splitting into the two current contributions depends on the gauge, it has no
deeper physical meaning. Physically, paramagnetic means a positive response on an external magnetic field (enhancing
the field inside the material) and diamagnetic means a negative response.
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Since in the ground state E = φ, and EΨ = i~∂Ψ/∂t, we also have

~
∂θ

∂t
= −φ. (9)

The London theory derives from (8) and (9). It is valid in the London limit, where nB = const. in
space can be assumed.

The time derivative of (8) yields with (9)

∂
(
Λjs

)

∂t
= −∂A

∂t
− 1

q

∂φ

∂r
,

or

∂
(
Λjs

)

∂t
= Eeff (10)

This is the first London equation:

A supercurrent is freely accelerated by an applied voltage, or, in a bulk superconductor
with no supercurrent or with a stationary supercurrent there is no effective electric field
(constant electrochemical potential).

The first London equation yields the absence of thermoelectric effects, if the electrochemical poten-
tials of conduction electrons, φel, and of the supercurrent, φ, are coupled. The thermoelectric effects
are sketchy illustrated in Fig. 3. The first London equation causes the electrochemical potential of
the supercurrent carrying field to be constant in every stationary situation. If the supercurrent car-
rying field reacts with the conduction electron field with n electrons forming a field quantum with
charge q, then the electrochemical potentials must be related as nφel = φ. Hence the electrochemical
potential of the conduction electrons must also be constant: no thermopower (Seebeck voltage) may
develop in a superconductor. The thermoelectric current flowing due to the temperature difference
is canceled by a back flowing supercurrent, with a continuous transformation of conduction electrons
into supercurrent density at the one end of the sample and a back transformation at the other end.

If a loop of two different normal conductors is formed with the junctions kept at different tem-
peratures, then a thermoelectric current develops together with a difference of the electrochemical
potentials of the two junctions, and several forms of heat are produced, everything depending on the
combination of the two metals. If there is no temperature difference at the beginning, but a current is
maintained in the ring (by inserting a power supply into one of the metal halfs), then a temperature
difference between the junctions will develop. This is how a Peltier cooler works. In a loop of two
superconductors non of those phenomena can appear since a difference of electrochemical potentials
cannot be maintained. Every normal current is locally short-circuited by supercurrents.

If, however, a normal metal A is combined with a superconductor B in a loop, a thermoelectric
current will flow in the normal half without developing an electrochemical potential difference of the
junctions because of the presence of the superconductor on the other side. This yields a direct absolute
measurement of the thermoelectric coefficients of a single material A.

The curl of Eq. (8) yields (with ∂
∂r

× ∂
∂r

= 0)

∂

∂r
×
(

Λjs

)

= −B. (11)

This is the second London equation. It yields the ideal diamagnetism, the Meissner effect, and the
flux quantization.

Take the curl of Maxwell’s equation (Ampere’s law) and consider ∂
∂r

×
(
∂
∂r

×B
)

= ∂
∂r

(
∂B
∂r

)
− ∂2

∂r2 B:

∂

∂r
× B = µ0

(
js + j

)
,

∂B

∂r
= 0, (12)
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Figure 3: Thermoelectric phenomena in normal conductors and superconductors.
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∂

∂r
×
( ∂

∂r
× B

)
= µ0

∂

∂r
×
(
js + j

)
,

− ∂2

∂r2
B = µ0

∂

∂r
×
(
js + j

)
,

∂2

∂r2
B =

µ0

Λ
B − µ0

∂

∂r
× j.

If j = 0 or ∂
∂r

× j = 0 for the normal current inside the superconductor, then

∂2

∂r2
B =

B

λ2
L

, λL =

√

Λ

µ0
=

√
mB

nBµ0q2
(13)

with solutions
B = B0e

−n·r/λL , n2 = 1, n · B0 = 0 (14)

several of which with appropriate unit vectors n may be superimposed to fulfill boundary conditions.
λL is London’s penetration depth.

Any external field B is screened to zero inside a bulk superconducting state within a surface layer
of thickness λL. It is important that (11) does not contain time derivatives of the field but the field
B itself: If a metal in an applied field B0 is cooled down below Tc, the field is expelled.

C

B

d≫ λ

Figure 5: Flux through a superconducting ring.

Consider a superconducting
ring with magnetic flux Φ pass-
ing through it (Fig. 5). Because of
(14) and (12), js = 0 deep inside
the ring on the contour C. Hence,
from (10), Eeff = E = 0 there.
From Faraday’s law, (∂/∂r)×E =
−∂B/∂t,

dΦ

dt
=

d

dt

∫

A

BdS = −
∮

C

Edl = 0,

(15)
where A is a surface with bound-
ary C, and Φ is the magnetic flux
through A.

Even if the supercurrent in a
surface layer of the ring is chang-
ing with time (for instance, if an
applied magnetic field is changing with time), the flux Φ is not:
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The flux through a superconducting ring is trapped.

Integrate Eq. (8) along the contour C:

∮

C

(
A + Λjs

)
· dl =

~

q

∮

C

∂θ

∂r
· dl.

The integral on the right hand side is the total change of the phase θ of the wavefunction (7) around
the contour, which must be an integer multiple of 2π since the wavefunction itself must be unique.
Hence, ∮

C

(
A + Λjs

)
· dl =

~

q
2πn. (16)

The left hand integral has been named the fluxoid by F. London. In the situation of our ring we find

Φ =
~

q
2πn. (17)

By directly measuring the flux quantum Φ0 the absolute value of the superconducting charge was
measured:

|q| = 2e, Φ0 =
h

2e
. (18)

(The sign of the flux quantum may be defined arbitrarily; e is the proton charge.)
If the supercurrent js along the contour C is non-zero, then the flux Φ is not quantized any more,

the fluxoid (16), however, is always quantized.
In order to determine the sign of q, consider a superconducting sample which rotates with the

angular velocity ω. Since the sample is neutral, its superconducting charge density qnB is neutralized
by the charge density −qnB of the remainder of the material. Ampere’s law (in the absence of a
normal current density j inside the sample) yields now

∂

∂r
× B = µ0

(
js − qnBv

)
,

where v = ω × r is the local velocity of the sample, and js is the supercurrent with respect to the
rest coordinates. Taking again the curl and considering

∂

∂r
× v =

∂

∂r
×
(
ω × r

)
= ω

∂r

∂r
−
(

ω ·

∂

∂r

)

r = 3ω − ω = 2ω

leads to

− ∂2

∂r2
B = µ0

∂

∂r
× js − 2µ0qnBω.

We define the London field

BL ≡ −2λ2
Lµ0qnBω = −2mB

q
ω (19)

and consider the second London equation (11) to obtain

∂2

∂r2
B =

B − BL

λ2
L

: (20)

Deep inside a rotating superconductor the magnetic field is not zero but equal to the homogeneous
London field.

Independent measurements of the flux quantum and the London field result in

q = −2e, mB = 2me. (21)

The bosonic field Ψ is composed of pairs of electrons.
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2.3 Gauge symmetry, London gauge

If χ(r, t) is an arbitrary differentiable single-valued function, then the electromagnetic field (2) is
invariant under the gauge transformation

A −→ A +
∂χ

∂r
,

U −→ U − ∂χ

∂t
. (22a)

Since potentials in electrodynamics can only indirectly be measured through fields, electrodynamics
is symmetric with respect to gauge transformations (22a).

Eqs. (8, 9), and hence the London theory are covariant under local gauge transformations, if (22a)
is supplemented by

θ −→ θ − 2e

~
χ,

φ −→ φ+ 2e
∂χ

∂t
. (22b)

From (8), the supercurrent js is still gauge invariant, and so are the electromagnetic properties of a
superconductor. However, the electrochemical potential φ is directly observable in thermodynamics
by making contact to a bath. The thermodynamic superconducting state breaks gauge symmetry.

For theoretical considerations a special gauge is often advantageous. The London gauge chooses χ
in (22b) such that the phase θ ≡ 0. Then, from (8),

Λjs = −A, (23)

which is convenient for computing patterns of supercurrents and fields.

12



3 THE THERMODYNAMICS OF THE

PHASE TRANSITION1

Up to here we considered superconductivity as a property of a bosonic condensate. From experiment
we know, that the considered phenomena are present up to the critical temperature, Tc, of the tran-
sition from the superconducting state, indexed by s, into the normal conducting state, indexed by
n, as temperature rises. The parameters of the theory, nB and λL, are to be expected temperature
dependent: nB must vanish at Tc.

In this and the next chapters we consider the vicinity of the phase transition, T − Tc ≪ Tc.

3.1 The Free Energy

Experiments are normally done at given temperature T , pressure p, and magnetic field B produced
by external sources. Since according to the first London equation (10) there is no stationary state
at E 6= 0, we must keep E = 0 in a thermodynamic equilibrium state. Hence, we consider the
(Helmholtz) Free Energy

Fs(T, V,B), Fn(T, V,B), (24)

∂F

∂T
= −S, ∂F

∂V
= −p, ∂F

∂B
= −Vm, (25)

where S is the entropy, and m is the magnetization density. First, the dependence of Fs on B is
determined from the fact that in the bulk of a superconductor

Bext + Bm = B + µ0m = 0 (26)

as it follows from the second London equation (11). Hence,

∂Fs
∂B

= +
VB

µ0
=⇒ Fs(B) = Fs(0) +

V B2

2µ0
. (27)

The magnetic susceptibility of a normal (non-magnetic) metal is

|χm,n| ≪ 1 = |χm,s|, (28)

hence it may be neglected here:

Fn(B) ≈ Fn(0). (29)

Eq. (27) implies (cf. (25))

Fs(T, V,B) = Fs(T, V, 0) +
V B2

2µ0
,

p(T, V,B) = p(T, V, 0) − B2

2µ0
. (30)

The pressure a superconductor exerts on its surroundings reduces in an external field B: The field B

implies a force per area

F = −n
B2

2µ0
(31)

on the surface of the superconductor with normal n.

1L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media, Chap. VI, Pergamon, Oxford, 1960.
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3.2 The Free Enthalpy

The relations between the Free Energy F and the Free Enthalpy (Gibbs Free Energy) G at B = 0
and B 6= 0 read

Fs(T, V, 0) = Gs(T, p(T, V, 0), 0) − p(T, V, 0)V

and

Fs(T, V, 0) +
V B2

2µ0
= Fs(T, V,B) =

= Gs(T, p(T, V,B),B) − p(T, V,B)V =

= Gs(T, p(T, V, 0) − B2

2µ0
,B) − p(T, V, 0)V +

V B2

2µ0
.

These relations combine to

Gs(T, p(T, V, 0), 0) = Gs(T, p(T, V, 0) − B2

2µ0
,B),

or

Gs(T, p,B) = Gs(T, p+
B2

2µ0
, 0). (32)

In accord with (31), the effect of an external magnetic field B on the Free Enthalpy is a reduction of
the pressure exerted on the surroundings, by B2/2µ0. In the normal state, from (29),

Gn(T, p,B) = Gn(T, p, 0). (33)

The critical temperature Tc(p,B) is given by

Gs(Tc, p+
B2

2µ0
, 0) = Gn(Tc, p, 0). (34a)

Likewise Bc(T, p) from

Gs(T, p+
B2
c

2µ0
, 0) = Gn(T, p, 0). (34b)

B

T
T

Tc(B)

B

Bc(T )

Figure 6: The critical temperature as a function of the applied magnetic field and the thermodynamic
critical field as a function of temperature.
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3.3 The thermodynamic critical field

The Free Enthalpy difference between the normal and superconducting states is usually small, so that
at T < Tc(B = 0) the thermodynamic critical field Bc(T ) for which (34) holds is also small. Taylor
expansion of the left hand side of (34) yields

Gn(T, p) = Gs(T, p) +
B2
c

2µ0

∂Gs
∂p

= Gs(T, p) +
B2
c

2µ0
V (T, p,B = 0). (35)

Experiment shows that at B = 0 the phase transition is second order,

Gn(T, p) −Gs(T, p) = a
(
Tc(p) − T

)2
. (36)

Hence,
Bc(T, p) = b

(
Tc(p) − T

)
, (37)

where a is a constant, and b =
√

2µ0a/V . Tc(p) is meant for B = 0.

B

Bc(T )
P

TTc(p)

b(Tc(p) − T )

∂Bc
∂T

= 0

FIG. 7: The thermodynamic critical field.

µ0M = V Bm

µ0∆G

χm = −1

Meissner
effect

B

normal state

Bc(T )

FIG. 8: The magnetization curve of a superconductor.

We consider all thermodynamic parameters T, p,B at the phase transition point P of Fig. 7. From
(32),

Ss(T, p,B) = −∂Gs
∂T

= Ss(T, p+
B2

2µ0
, 0),

Vs(T, p,B) =
∂Gs
∂p

= Vs(T, p+
B2

2µ0
, 0). (38)

Differentiating (34b) with respect to T yields, with (38),

∂

∂T
Gs(T, p+

B2
c (T, p)

2µ0
, 0) =

∂

∂T
Gn(T, p, 0 or Bc),

−Ss(T, p,Bc) +
Vs(T, p,Bc)

2µ0

∂

∂T
B2
c (T, p) = −Sn(T, p,Bc),

∆S(T, p,Bc) = Ss(T, p,Bc) − Sn(T, p,Bc) =
Vs(T, p,Bc)

µ0
Bc(T, p)

∂Bc(T, p)

∂T
. (39)

According to (37) this difference is non-zero for Bc 6= 0 (T < Tc(p)): For B 6= 0 the phase transition
is first order with a latent heat

Q = T∆S(T, p,Bc). (40)
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For T → 0, Nernst’s theorem demands Ss = Sn = 0, and hence

lim
T→0

∂Bc(T, p)

∂T
= 0. (41)

3.4 Heat capacity jump

For B ≈ 0, T ≈ Tc(p) we can use (35). Applying −T∂2/∂T 2 yields

∆Cp = Cp,s − Cp,n = −T ∂2

∂T 2

(

Gs(T, p) −Gn(T, p)
)

=
TV (T, p)

2µ0

∂2

∂T 2
B2
c (T, p). (42)

The thermal expansion ∂V/∂T gives a small contribution which has been neglected. With

∂2

∂T 2
B2
c =

∂

∂T
2Bc

∂Bc
∂T

= 2

(

∂Bc
∂T

)2

+ 2Bc
∂2Bc
∂T 2

we find

∆Cp =
TV

µ0

[(

∂Bc
∂T

)2

+Bc
∂2Bc
∂T 2

]

(43)

For T → Tc(p), Bc → 0 the jump in the specific heat is

∆Cp =
TcV

µ0

(

∂Bc
∂T

)2

=
TcV

µ0
b2. (44)

It is given by the slope of Bc(T ) at Tc(p).

S

TTc(p)

B = 0

Sn

Ss

FIG. 9: The entropy of a superconductor.

Cp

B = 0

∆Cp

Tc(p) T

FIG. 10: The heat capacity of a superconductor.
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4 THE GINSBURG-LANDAU THEORY;1

TYPES OF SUPERCONDUCTORS

According to the Landau theory of second order phase transitions with symmetry reduction2 there is a
thermodynamic quantity, called an order parameter, which is zero in the symmetric (high temperature)
phase, and becomes continuously non-zero in the less symmetric phase.

4.1 The Landau theory

The quantity which becomes non-zero in the superconducting state is

nB = |Ψ|2. (45)

For nB > 0, the electrochemical potential φ has a certain value which breaks the global gauge sym-
metry by fixing the time-derivative of the phase θ of Ψ (cf. (22b)). According to the Landau theory,
the Free Energy is the minimum of a “Free Energy function” of the order parameter with respect to
variations of the latter:

F (T, V ) = min
Ψ

F(T, V, |Ψ|2). (46)

��
��
��
��
�
�
�

�
�
�

F

|Ψ|2

nB,min

T > Tc (t > 0)

T = Tc (t = 0)

T < Tc (t < 0)

Figure 11: The Free Energy function.

Close to the transition, for

t =
T − Tc
Tc

, |t| ≪ 1, (47)

the order parameter |Ψ|2 is small, and F may be Taylor expanded (for fixed V ):

F(t, |Ψ|2) = Fn(t) +A(t)|Ψ|2 +
1

2
B(t)|Ψ|4 + · · · (48)

From the figure we see that
A(t) T 0 for t T 0, B(t) > 0.

1V. L. Ginsburg and L. D. Landau, Zh. Eksp. Teor. Fiz. (Russ.) 20, 1064 (1950).
2L. D. Landau, Zh. Eksp. Teor. Fiz. (Russ.) 7, 627 (1937).
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Since |t| ≪ 1, we put

A(t) ≈ αtV, B(t) ≈ βV. (49)

Then we have

Fn(t) = Fn(t) for t ≥ 0, (50)

and
1

V

∂F
∂|Ψ|2 = αt+ β|Ψ|2 = 0, that is,

|Ψ|2 = −αt
β
, Fs(t) = Fn(t) −

α2t2

2β
V for t < 0. (51)

Recalling that small changes in the Free Energy and Free Enthalpy are equal and comparing to
(35) yields

α2t2

2β
=

B2
c

2µ0
=⇒ Bc(t) = α|t|

√
µ0

β
. (52)

From (43),

∆Cp =
TcV

µ0

(

∂Bc
Tc∂t

)2

=
V

Tc

α2

β
(53)

follows. While ∆Cp can be measured, this is not always the case for the thermodynamic critical field,
Bc, as we will later see.

Eqs. (51) and (52) may be rewritten as

nB(t) =
α

β
|t|, B2

c (t) =
α2t2µ0

β
,

hence,

β =
B2
c (t)

µ0n2
B(t)

, α =
B2
c (t)

µ0|t|nB(t)
. (54)

Since according to (37) Bc ∼ t, it follows

nB ∼ t. (55)

The bosonic density tends to zero linearly in Tc − T .

4.2 The Ginsburg-Landau equations

If we want to incorporate a magnetic field B into the “Free Energy function” (48), we have to realize
that B causes supercurrents js ∼ ∂Ψ/∂r, and these create an internal field, which was called Bm in
(26). The energy contribution of Ψ must be related to (3). Ginsburg and Landau wrote it in the form

F(t,B,Ψ) = Fn(t) +

+

∫ ∞
d3r

B2
m

2µ0
+

∫

V

d3r

{

~
2

4m

∣
∣
∣
∣

(
∂

∂r
+

2ie

~
A

)

Ψ

∣
∣
∣
∣

2

+ αt|Ψ|2 +
β

2
|Ψ|4

}

, (56a)

where also (21) was considered. The first correction term is the field energy of the field Bm created
by Ψ, including the stray field outside of the volume V while Ψ 6= 0 inside V only. A is the vector
potential of the total field acting on Ψ:

∂

∂r
× A = B + Bm. (56b)

18



The Free Energy is obtained by minimizing (56a) with respect to Ψ(r) and Ψ∗(r). To prepare for a
variation of Ψ∗, the second integral in (56a) is integrated by parts:

∫

V

d3r

[(
∂

∂r
+

2ie

~
A

)

Ψ

][(
∂

∂r
− 2ie

~
A

)

Ψ∗
]

=

= −
∫

V

d3rΨ∗
(
∂

∂r
+

2ie

~
A

)2

Ψ +

∫

∂V

d2nΨ∗
(
∂

∂r
+

2ie

~
A

)

Ψ. (56c)

From the first integral on the right we see that (56a) indeed corresponds to (3). The preference of the
writing in (56a) derives from that kinetic energy expression being manifestly positive definite in any
partial volume.

Now, the variation Ψ∗ → Ψ∗ + δΨ∗ yields

0
!
= δF =

∫

V

d3rδΨ∗
{

− ~
2

4m

(
∂

∂r
+

2ie

~
A

)2

+ αt+ β|Ψ|2
}

Ψ +

+

∫

∂V

d2nδΨ∗ ~
2

4m

(
∂

∂r
+

2ie

~
A

)

Ψ.

F is stationary for any variation δΨ∗(r), if

1

4m

(
~

i

∂

∂r
+ 2eA

)2

Ψ − α|t|Ψ + β|Ψ|2Ψ = 0 (57)

and

n

(
~

i

∂

∂r
+ 2eA

)

Ψ = 0. (58)

The connection of Ψ with Bm must be that of Ampere’s law: (∂/∂r) × Bm = µ0js with js given
by (6). Since in thermodynamic equilibrium there are no currents besides js in the superconductor,
(∂/∂r) × B = 0 there. Hence, we also have

∂

∂r
× Btot = µ0js, Btot = B + Bm =

∂

∂r
× A,

js =
ie~

2m

(

Ψ∗ ∂

∂r
Ψ − Ψ

∂

∂r
Ψ∗
)

− 2e2

m
Ψ∗AΨ.

(59)

It is interesting to see that (59) is also obtained from (56a), if Ψ∗, Ψ and A are varied independently:
The variation of A on the left hand side of (56c) yields

2ie

~

∫

V

d3rδA ·
[

Ψ

(
∂

∂r
− 2ie

~
A

)

Ψ∗ − Ψ∗
(
∂

∂r
+

2ie

~
A

)

Ψ

]

.

With δBm = (∂/∂r) × δA the variation of the first integral of (56a) yields

δ

∫ ∞
d3rB2

m = 2

∫ ∞
d3rδBm · Bm = 2

∫ ∞
d3r

(
∂

∂r
× δA

)

· Bm =

= 2

∫ ∞
d3r

︷ ︸︸ ︷

∂

∂r
·
(

δA×Bm

)

= 2

∫ ∞
d3rδA ·

(
∂

∂r
× Bm

)

=

= 2

∫

V

d3rδA ·
(
∂

∂r
× Btot

)

+ · · · . (60)

In the fourth equality an integration per parts was performed, and a · (b× c) = −b · (a× c) was used.
(The over brace indicates the range of the differential operator.) Finally, the integral over the infinite
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space is split into an integral over the superconductor (volume V ), where (∂/∂r)×Bm = (∂/∂r)×Btot,
and the integral over the volume outside of the superconductor, indicated by dots, since we do not
need it. Now, after adding the prefactors from (56a) we see that stationarity of (56a) with respect to
a variation δA inside the volume V again leeds to (59).

This situation is no accident. From a more general point of view the Ginsburg-Landau functional
(56a) may be considered as an effective Hamiltonian for the fluctuations of the fields Ψ and A near
the phase transition.1 This is precisely the meaning of relating (56a) to (3).

Eqs. (57) and (59) form the complete system of the Ginsburg-Landau equations.

The boundary condition (58) comes about by the special writing of (56a) without additional surface
terms. This is correct for a boundary superconductor/vacuum or superconductor/semiconductor. A
careful analysis on a microscopic theory level yields the more general boundary condition

n ·
(

~

i

∂

∂r
+ 2eA

)

Ψ =
iΨ

b
, (61)

where b depends on the outside material: b = ∞ for vacuum or a non-metal, b = 0 for a ferromagnet,
b finite and non-zero for a normal metal.2

In all cases, multiplying (61) by Ψ∗ and taking the real part yields

n · js = 0 (62)

as it must: there is no supercurrent passing through the surface of a superconductor into the non-
superconducting volume.

Btot must be continuous on the boundary because, according to ∂Btot/∂r = 0 and (59), its
derivatives are all finite.

4.3 The Ginsburg-Landau parameter

Taking the curl of (59) yields, like in (13),

∂2Btot

∂r2
=
Btot

λ2
, λ2 =

m

2µ0e2|Ψ|2 =
mβ

2µ0e2α|t|
, (63)

where (51) was taken into account in the last expression. λ is the Ginsburg-Landau penetration depth;
it diverges at Tc like λ ∼ |t|−1: if Tc is approached from below, the external field penetrates more and
more, and eventually, at Tc, the diamagnetism vanishes.

Eq. (57) contains a second length parameter: In the absence of an external field, A = 0, and for
small Ψ, |Ψ|2 ≪ α|t|/β, one is left with

∂2Ψ

∂r2
=

Ψ

ξ2
, ξ2 =

~
2

4mα|t| . (64)

This equation describes spatial modulations of the order parameter |Ψ|2 close to Tc. ξ is the Ginsburg-
Landau coherence length of such order parameter fluctuations. It has the same temperature dependence
as λ, and their ratio,

κ =
λ

ξ
=

√

2m2β

~2µ0e2
, (65)

is the celebrated Ginsburg-Landau parameter.

1L. D. Landau and E. M. Lifshits, Statistical Physics, Part I, §147, Pergamon, London, 1980.
2P. G. De Gennes, Superconductivity in metals and alloys, New York 1966, p. 225 ff.
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Introduction of dimensionless quantities

x = r/λ,

ψ = Ψ

/√

α|t|
β
,

b = Btot

/√
2Bc(t) = Btot

/(

α|t|
√

2µ0

β

)

,

is = js

(

λµ0

/√
2Bc(t)

)

,

a = A
/(√

2λBc(t)
)

(66)

yields the dimensionless Ginsburg-Landau equations

(
1

iκ

∂

∂x
+ a

)2

ψ − ψ + |ψ|2ψ = 0,

∂

∂x
× b = is, is =

i

2κ

(

ψ∗ ∂

∂x
ψ − ψ

∂

∂x
ψ∗
)

− ψ∗aψ

(67)

which contain the only parameter κ.

4.4 The phase boundary

We consider a homogeneous superconductor at T . Tc in an homogeneous external field B ≈ Bc(T ) in
z-direction. We assume a plane phase boundary in the y−z-plane so that for x→ −∞ the material is
still superconducting, and the magnetic field is expelled, but for x→ ∞ the material is in the normal
state with the field penetrating.

is

superconducting normal

z

y

b

phase
boundary

b = 0
ψ = 1

b = 1/
√

2
ψ = 0

x

Figure 12: Geometry of a plane phase boundary.

We put

ψ = ψ(x), bz = b(x), bx = by = 0,

21



ay = a(x), ax = az = 0, b(x) = a′(x).

Then, the supercurrent is flows in the y-direction, and hence the phase of ψ depends on y. We
consider y = 0 and may then choose ψ real. Further, by fixing another gauge constant, we may choose
a(−∞) = 0.

Then, Eqs. (67) reduce to

− 1

κ2
ψ′′ + a2ψ − ψ + ψ3 = 0, a′′ = aψ2. (68)

Let us first consider κ≪ 1. For large enough negative x we have a ≈ 0 and ψ ≈ 1. We put ψ = 1−ǫ(x),
and get from the first equation (68)

ǫ′′ ≈ κ2
(
1 − ǫ− 1 + 3ǫ

)
= 2κ2ǫ, ǫ ∼ e

√
2κx, x . κ−1.

On the other hand, for large enough positive x we have b = 1/
√

2, a = x/
√

2, ψ ≪ 1, hence, again
from the first equation (68),

ψ′′ ≈ κ2x2

2
ψ, ψ ∼ e−κx

2/2
√

2, κx2 ≫ 1.

The second Eq. (68) yields a penetration depth ∼ ψ−1
0 , where ψ0 denotes the value of ψ(x) where the

field drops:

1

b

∼ e−κx
2/2

√
2

κ≪ 1

1/κ = ξ

1/
√
κ > 1

∼ eψ0x

ψ0 ∼ √
κ

ψ1 − ce
√

2κx
1√
2

Figure 13: The phase boundary of a type I superconductor.

In the opposite case κ ≫ 1, ψ falls off for x & 1, where b ≈ 1/
√

2, a ≈ x/
√

2, and for x ≫ 1,
ψ′′ ≈ κ2x2ψ/2 :
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1

b

ψ κ≫ 1

∼ e−κx
2/2

√
2

1 = λ

1/
√
κ < 1

1√
2

Figure 14: The phase boundary of a type II superconductor.

4.5 The energy of the phase boundary

For B = Bc(T ), b = 1 in our units, the Free Energy of the normal phase is just equal to the Free
Energy of the superconducting phase in which b = 0, ψ = 1. If we integrate the Free Energy density
variation (per unit area of the y − z-plane), we obtain the energy of the phase boundary per area:

ǫs/n =

∫ ∞

−∞
dx

{

(B −Bc)
2

2µ0
+

~
2

4m

(

|Ψ′|2 +
4e2

~2
A2|Ψ|2

)

− α|t||Ψ|2 +
β

2
|Ψ|4

}

. (69)

Since the external field is Bc, we have used Bm = Btot − Bext = B − Bc. In our dimensionless
quantities this is (x is now measured in units of λ)

ǫs/n =
λB2

c

µ0

∫ ∞

−∞
dx

{
(
b− 1√

2

)2
+

1

κ2
ψ′2 +

(
a2 − 1

)
ψ2 +

ψ4

2

}

=

=
λB2

c

µ0

∫ ∞

−∞
dx

{
(
a′ − 1√

2

)2 − 1

κ2
ψ′′ψ +

(
a2 − 1

)
ψ2 +

ψ4

2

}

=

=
λB2

c

µ0

∫ ∞

−∞
dx

{
(
a′ − 1√

2

)2 − ψ4

2

}

. (70)

First an integration per parts of ψ′2 was performed, and then (68) was inserted. We see that ǫs/n can
have both signs:

ǫs/n ≷ 0 for

(

a′ − 1√
2

)2

≷ ψ4

2
or

ψ2

√
2

≶
( 1√

2
− a′

)
.

Since b must decrease if ψ2 increases and ψ = 0 at b = 1/
√

2, (b− 1/
√

2) = (a′ − 1/
√

2) and ψ2 must
have opposite signs which leads to the last condition. If

1√
2
− a′ =

ψ2

√
2

would be a solution of (68), it would correspond to ǫs/n = 0.

23



We now show that this is indeed the case for κ2 = 1/2. First we find a first integral of (68):

ψ′′ = κ2

[
(
a2 − 1

)
ψ + ψ3

]

,

2ψ′ψ′′ = κ2

[

2ψψ′a2 − 2ψψ′ + 2ψ3ψ′
]

=

= κ2

[

2ψψ′a2 + 2ψ2aa′ − 2a′a′′
︸ ︷︷ ︸

−2ψψ′ + 2ψ3ψ′
]

= 0 by the second Eq. (67)

ψ′2 = κ2

[

ψ2a2 − a′
2 − ψ2 +

ψ4

2
+ const.

]

(71)

since ψ′ = ψ = 0 for a′ =
1√
2

=⇒ const. =
1

2
.

Now we use

κ2 =
1

2
,

1√
2
− a′ =

ψ2

√
2

⇒ −a′′ =
√

2ψψ′ = −aψ2 ⇒ ψ′ = −a ψ√
2

and have from (71)

ψ′2 =
1

2

[

2ψ′2 − a′
2 −

(
1 −

√
2a′
)

+
( 1√

2
− a′

)2
+

1

2

]

,

which is indeed an identity.
Since ψ′2/κ2 > 0 enters the integral for ǫs/n in the first line of (70), it is clear that ǫs/n is positive

for κ2 → 0. Therefore, the final result is

ǫs/n ≷ 0 for κ ≶ 1√
2

: type
I
II

(72)

The names “type I” and “type II” for superconductors were coined by Abrikosov,1 and it was the
existence of type II superconductors and a theoretical prediction by Abrikosov, which paved the way
for technical applications of superconductivity.

1A. A. Abrikosov, Sov. Phys.–JETP 5, 1174 (1957).

24



5 INTERMEDIATE STATE, MIXED STATE

In Chapter 2 we considered a superconductor in a sufficiently weak magnetic field, B < Bc, where we
found the ideal diamagnetism, the Meissner effect, and the flux quantization.

In Chapter 3 we found that the difference between the thermodynamic potentials in the normal
and the superconducting homogeneous phases per volume without magnetic fields may be expressed
as (cf. (35))

1

V

[

Gn(p, T ) −Gs(p, T )
]

=
1

V

[

Fn(V, T ) − Fs(V, T )
]

=
B2
c (T )

2µ0
(73)

by a thermodynamic critical field Bc(T ). (We neglect here again the effects of pressure or of corre-
sponding volume changes on Bc.)

If a magnetic field B is applied to some volume part of a superconductor, it may be expelled
(Meissner effect) by creating an internal field Bm = −B through supercurrents, on the cost of an
additional energy

∫
d3rB2

m/2µ0 for the superconducting phase (cf. (56a)) and of a kinetic energy
density (~2/4m)|(∂/∂r + 2ieA/~)Ψ|2 in the surface where the supercurrents flow. If Bm > Bc,
the Free Energy of the superconducting state becomes larger than that of the normal state in a
homogeneous situation. However, B itself may contain a part created by currents in another volume
of the superconductor, and phase boundary energies must also be considered. There are therefore
long range interactions like in ferroelectrics and in ferromagnets, and corresponding domain patterns
correspond to thermodynamic stable states. The external field B at which the phase transition appears
depends on the geometry and on the phase boundary energy.

5.1 The intermediate state of a type I superconductor

Apply a homogeneous external field Bext to a superconductor. B = Bext +Bm depends on the shape
of the superconductor. Here and in all that follows B means Btot. There is a certain point, at which
B = Bmax > Bext (Fig. 15). If Bmax > Bc, the superconducting state becomes instable there. On
could think of a normal-state concave island forming (Fig. 16).

SC

Bmax

Bext

Bext + Bm

FIG. 15: Total (external plus induced) mag-
netic field around a type I superconductor.

SC

Bmax

n

FIG. 16.

This, however, cannot be stable either: the point of Bmax = Bc has now moved into the super-
conductor to a point of the phase boundary between the normal and superconducting phases, which
means that in the shaded normal area B < Bc; this area must become superconducting again (Fig. 16).
Forming of a convex island would cause the same problem (Fig. 17).
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n SC

Bmax

FIG. 17.

SC

FIG. 18.

Bm Bext
Bc

2
3Bc

sphere
long rod

µ0·{energy of the stray field +
+ energy of phase boundaries}

first order
transition

Figure 19:

What really forms is
a complicated lamellous or
filamentous structure of al-
ternating superconducting
and normal phases through
which the field penetrates
(Fig. 18).

The true magnetization
curve of a type I supercon-
ductor in different geome-
tries is shown on Fig. 19.
It depends on the geometry
because the field created by
the shielding supercurrents
does. In Section 3.C, for
B 6= 0 the phase transition
was obtained to be first or-
der. Generally, the move-
ment of phase boundaries is
hindered by defects, hence
there is hysteresis around
Bc.
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5.2 Mixed state of a type II superconductor1

If the phase boundary energy is negative, germs of normal phase may form well below Bc, at the lower
critical field Bc1, and germs of superconducting phase may form well above Bc, at the upper critical
field Bc2, in both cases by gaining phase boundary energy.

At B / Bc2, in small germs ψ ≪ 1 and b ≈ const. The dimensionless Ginsburg-Landau equations
(67) may be linearized:

(
1

iκ

∂

∂x
+ a

)2

ψ = ψ. (74)

y

a

b

x

.

Figure 20:

We apply the external B-field in z-direction (Fig. 20),

bx = by = 0, bz = b, ax = −by, ay = az = 0,

and assume germ filaments along the field lines:

ψ = ψ(x, y).

Then, (74) is cast into

[(
1

iκ

∂

∂x
− by

)2

− 1

κ2

∂2

∂y2

]

ψ = ψ.

With ψ(x, y) = eipxφ(y), p/(bκ) = y0 this equation simplifies
to [−(1/κ2)(d2/dy2)+b2(y−y0)2]φ = φ, or, after multiplying
with κ/2 and by defining u2 ≡ κ(y − y0)

2 :

[

−1

2

d2

du2
+

1

2
b2u2

]

φ =
κ

2
φ. (75)

This is the Schrödinger equation for the ground state of a harmonic oscillator with

ω = b = κ =⇒ B =
√

2κBc.

Hence,

Bc2(T ) =
√

2κBc(T ). (76)

If a germ close to the surface of a superconductor at y=const. is considered, then the u-coordinate
must be cut at some finite value. There, the boundary condition (58) yields dφ/du = 0 (since n·a = 0).
Therefore, instead of the boundary problem, the symmetric ground state in a double oscillator with
a mirror plane may be considered (Fig. 21).

ψ′(0) = 0

ψ

u0 u

FIG. 21: The ground state of a double oscillator.

min
u0

E0 = 0.59
~ω

2

1A. A. Abrikosov, unpublished 1955; Sov. Phys.–JETP 5, 1174 (1957).
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Hence, at

Bc3 =
Bc2
0.59

= 1.7Bc2 = 2.4κBc (77)

superconductivity may set in in a surface layer of thickness ∼ ξ.
In a type I superconductor, Bc2 < Bc. However, only below Bc2 germs with arbitrarily small

ψ-values could form where the superconducting phase is already absolutely stable in a type I super-
conductor. Here, for Bc2 < B < Bc germs can only form with a non-zero minimal ψ-value, which is
inhibited by positive surface energy. In this region the supercooled normal phase is metastable. For
κ > 0.59/

√
2, Bc3 > Bc, and surface superconductivity may exist above Bc.

5.3 The flux line in a type II superconductor

To determine Bc1, the opposite situation is considered. In the homogeneous superconducting state
with ψ = 1, the external magnetic field is tuned up until the first normal state germ is forming. Again
we may suppose that the germ is forming along a field line in z-direction. Since the phase boundary
energy is negative, there must be a tendency to form many face boundaries. However, the normal
germs cannot form arbitrarily small since we know from (17) that the flux connected with a normal
germ in a superconductor is quantized and cannot be smaller than

Φ0 =
2π~

2e
= 2π

√
2Bcλξ = 2π

√
2Bc

λ2

κ
, (78)

where additionally the definition of λ, ξ and κ by (63–65) was used. We consider a flux line of total
flux Φ0 along the z-direction (Fig. 22):

Bz

ξ λ

ρ

|Ψ|

FIG. 22: An isolated flux line.

Ψ = |Ψ|eiθ, B = ezB(ρ), ρ2 = x2 + y2

One could try to solve the Ginsburg-Landau equations for that case. However, there is no general
analytic solution, and the equations are valid close to Tc only, where |Ψ| is small. Instead we assume
κ ≫ 1, that is, λ ≫ ξ, and consider only the region ρ ≫ ξ, where |Ψ| =const. Then, from Ampere’s
law and (6),

∂

∂r
× B = µ0js =

µ0e~

m
|Ψ|2 ∂θ

∂r
− 2µ0e

2

m
|Ψ|2A =

=
2µ0e

2|Ψ|2
m

(
~

2e

∂θ

∂r
− A

)

=
1

λ2

(
Φ0

2π

∂θ

∂r
− A

)

,

hence,

A + λ2 ∂

∂r
× B =

Φ0

2π

∂θ

∂r
.

We integrate this equation along a circle around the flux line with radius ρ ≫ ξ and use Stokes’
theorem,

∮
dsA =

∫
d2n · ( ∂∂r

× A) :

∫

d2n · B + λ2

∮

ds ·
(
∂

∂r
× B

)

= Φ0. (79)
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The phase θ must increase by 2π on a circle around one fluxoid.
Now, we take ξ ≪ ρ≪ λ. Then, the first term in (79) may be neglected. We find

−2πρλ2 dB

dρ
= Φ0 (80)

or

B(ρ) =
Φ0

2πλ2
ln

(
ρ0

ρ

)

, ρ0 ≈ λ. (81)

The integration constant ρ0 was chosen such that (81) vanishes for ρ & λ, where a more accurate
analysis of (79) is necessary to get the correct asymptotics.

By applying Stokes’ theorem also to the second integral of (79), we have for all ρ≫ ξ

∫

d2n ·
(

B + λ2 ∂

∂r
×
(
∂

∂r
× B

))

=

∫

d2n ·
(

B − λ2 ∂
2

∂r2
B

)

= Φ0.

Since the right hand side does not change if we vary the area of integration,

B − λ2 ∂
2

∂r2
B = 0

must hold. In cylindric coordinates,

∂2

∂r2
=

1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2
,

hence,

B − λ2 1

ρ

∂

∂ρ
ρ
∂

∂ρ
B = 0

or

B′′ +
1

ρ
B′ − 1

λ2
B = 0. (82)

This equation is of the Bessel type. Its for large ρ decaying solution is

B(ρ) =
Φ0

2πλ2
K0

(
ρ

λ

)

−−−→
ρ→∞

Φ0
√

8πρλ2
e−ρ/λ, (83)

where K0 is McDonald’s function (Hankel’s function with imaginary argument), and the coefficient
has been chosen to meet (80) for ρ≪ λ.

The energy per length ǫ of the flux line consists of field energy and kinetic energy of the supercur-
rent:

ǫ =

∫

d2r

(
B2

2µ0
+
mB

2
nBv

2

)

, js = −2enBv, nB = |Ψ|2,

ǫ =

∫

d2r

(
B2

2µ0
+

m

4e2nB
j2s

)

=

=

∫

d2r

[
B2

2µ0
+

m

4µ2
0e

2|Ψ|2
(
∂

∂r
× B

)2]

=

=

∫

d2r

[
B2

2µ0
+

λ2

2µ0

(
∂

∂r
× B

)

·
(
∂

∂r
× B

)]

=

=
1

2µ0

∫

d2rB ·
[

B + λ2 ∂

∂r
×
(
∂

∂r
× B

)]

−

− λ2

2µ0

(
∮

ρ≈ξ
−
∮

ρ→∞

)

ds ·
[

B ×
(
∂

∂r
× B

)]

.
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The first integrand was shown to vanish for ρ≫ ξ, and the last contour integral vanishes for ρ→ ∞.
We neglect the contribution from ρ . ξ, and find with (80))

ǫ ≈ − λ2

2µ0
2πξB

dB

dρ
≈ Φ0B(ξ)

2µ0
≈ Φ0B(0)

2µ0
. (84)

With (81), the final result with logarithmic accuracy (ln(ξ/λ) ≪ 1) is

ǫ ≈ Φ2
0

4πµ0λ2
ln

(
λ

ξ

)

=
Φ2

0

4πµ0λ2
lnκ. (85)

This result also proves that the total energy is minimum for flux lines containing one fluxoid each:
For a flux line containing n fluxoids the energy would be n2ǫ while for n flux lines it would only be
nǫ (ǫ > 0).

In this analysis, B was the field created by the supercurrent around the vertex line. Its interaction
energy per length with a homogeneous external field in the same direction is

−
∫

d2r
BBext

µ0
= −Φ0Bext

µ0
. (86)

(85) and (86) are equal at the lower critical field Bext = Bc1:

Bc1 =
Φ0

4πλ2
lnκ = Bc

lnκ√
2κ
, κ≫ 1. (87)

The phase diagram of a type II superconductor is shown in Fig. 23. (There might be another phase with
spatially modulated order parameter under certain conditions, theoretically predicted independently
by Fulde and Ferell and by Larkin and Ovshinnikov; this FFLO phase has not yet been clearly observed
experimentally.)

B

FFLO?

surface

sc

sc

Bc1

Bc

Bc2

Bc3 n

mixed
phase

Tc T

Figure 23: The phase diagram of a type II superconductor.

A more detailed numerical calculation shows that in an isotropic material the energy is minimum
for a regular triangular lattice of the flux lines in the plane perpendicular to them. From (87), at
B = Bc1 the density of flux lines is lnκ/4πλ2, that is, the lattice constant a1 is obtained from
a2
1

√
3/2 = 4πλ2/ lnκ:

a1 =

√

8π√
3 lnκ

λ & λ. (88)

30



The lines (of thickness λ) indeed form nearly individually (Fig. 24). Since Bc2 = Bc12κ
2/ lnκ, the

lattice constant a2 at Bc2 is

a2 = a1

√

lnκ

2κ2
=

√

4π√
3

λ

κ
=

√

4π√
3
ξ & ξ. (89)

The cores of the flux lines (of thickness ξ) touch each other while the field is already quite homoge-
neous (Fig. 25). Since |Ψ| ≪ 1 in the core, the Ginsburg-Landau equations apply, and |Ψ| may rise
continuously from zero: the phase transition at Bc2 is second order.

a1 & λ

B

|Ψ|ξ

FIG. 24: Mixed phase for Bext ≈ Bc1.

solution
of (4.3)

|Ψ|

B

a2 & ξ

FIG. 25: Mixed phase for Bext ≈ Bc2.

For a long cylindric rod the stray field created by supercurrents outside of the rod may be neglected,
and one may express the field inside the rod as

B = Bext − µ0M

by a magnetization density M. The change in Free Energy at fixed T and V by tuning up the external
magnetic field is

dF = MdBext

Fn − Fs =

∫ Bc2

0

dBextM =
B2
c

2µ0
.
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Figure 26: Magnetization curve of a type II superconductor.

The differently dashed areas in Fig. 26 are equal. For type II superconductors, Bc is only a theoretical
quantity.
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6 JOSEPHSON EFFECTS1

The quantitative description of Josephson effects at T ≪ Tc (the usual case in applications) needs a
microscopic treatment. However, qualitatively they are the same at all temperatures T < Tc, hence
qualitatively they may be treated within the Ginsburg-Landau theory.

Consider a very thin weak link between two halfs of a superconductor (Fig. 27).

2ξ

S1 S2

d

x1 x2

Ψ

Ψ1 Ψ2

Θ2 = Θ1

x

Θ2 = Θ1 + π

FIG. 27: A weak link between two halfs of a superconductor.

Ψ(x1) ≡ Ψ1 = |Ψ|eiθ1

Ψ(x2) ≡ Ψ2 = |Ψ|eiθ2

The order parameter has its thermodynamic value on both sides x < x1, x > x2, but is expo-
nentially small at x = 0. Hence, any supercurrent through the weak link is small, and Ψ may be
considered constant in both bulks of superconductor. In the weak link, not only |Ψ| is small, also its
phase may change rapidly (e.g. from θ2 = θ1 to θ2 = θ1 + π by a very small perturbation).

Without the right half, the boundary condition (58) would hold at x1 :

(
∂

∂x
+

2ie

~
Ax

)

Ψ

∣
∣
∣
∣
x1

= 0.

In the presence of the right half, this condition must be modified to slightly depending on the value
Ψ2 :

(
∂

∂x
+

2ie

~
Ax

)

Ψ

∣
∣
∣
∣
x1

= cΨ2, (90)

1B. D. Josephson, Phys. Lett. 1, 251 (1962).
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where c is a small number depending on the properties of the weak link. Time inversion symmetry
demands that (90) remains valid for Ψ → Ψ∗, A → −A, hence c must be real as long as the phase of
Ψ does not depend on A. For the moment we choose a gauge in which Ax = 0. Then, the supercurrent
density at x1 is

js,x(x1) =
ie~

2m

[

Ψ∗
1

∂Ψ

∂x

∣
∣
∣
∣
x1

− Ψ1
∂Ψ∗

∂x

∣
∣
∣
∣
x1

]

=

=
ie~

2m
c
[

Ψ∗
1Ψ2 − Ψ1Ψ

∗
2

]

=

=
jm
2

[

ei(θ2−θ1) − ei(θ1−θ2)
]

= jm sin
(
θ2 − θ1

)
. (91)

We generalize the argument of the sine function by a general gauge transformation (22):

θ −→ θ − 2e

~
χ,

A −→ A +
∂χ

∂r
,

(

Ax = 0 → Ax = −∂χ
∂x

)

,

φ −→ φ+ 2e
∂χ

∂t

θ2 − θ1 −→ γ = θ2 − θ1 −
2e

~

(
χ2 − χ1

)
= θ2 − θ1 +

2e

~

∫ 2

1

dxAx, (92)

dγ

dt
=

2e

~

(
φ2 − φ1

)
. (93)

Recall that φ is the electrochemical potential measured by a voltmeter.
Now, the general Josephson equation reads

js = jm sin γ. (94)

6.1 The d.c. Josephson effect, quantum interference

According to (94), a d.c. supercurrent of any value between −jm and jm may flow through the junction,
and according to (93) the potential difference φ2 − φ1 is zero in that case.

Now, consider a junction in the y− z-plane with a magnetic field applied in z-direction. There are
supercurrents screening the field away from the bulks of the superconducting halfs.
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S1 S2

y

x

d ≈ 2λ

B

γ0

4 3
b

1 2

γ(y)

Figure 28: A Josephson junction in an external magnetic field B.
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Let us consider γ(y), and let γ(0) = γ0 at the edge y = 0. We have

Byd =

∫

1234

ds · A =

∫ 2

1

dxAx +

∫ 3

2

dyAy +

∫ 4

3

dxAx +

∫ 1

4

dyAy.

In the junction we choose the gauge Ax = −By, Ay = 0. Then, the y-integrals vanish, and from (92),

γ(0) = θ2 − θ1 = γ0, γ(y) = γ0 +
2π

Φ0

∫ 3

4

dxBy = γ0 +
2πBd

Φ0
y.

The d.c. Josephson current density through the junction oscillates with y according to

js(y) = jm sin

(

γ0 +
2πBd

Φ0
y

)

.

In experiment, at B = 0 one always starts from a biased situation with js = jm, hence γ0 = π/2, and

js(y) = jm cos
2πBd

Φ0
y. (95)

The total current through the junction is

Is = cjm

∫ b

0

dy cos
2πBd

Φ0
y,

where c is the thickness in z-direction. F = bc is the area of the junction. With
∫ b

0

dy cos(βy) = ℜ
∫ b

0

dyeiβy = ℜe
iβb − 1

iβ
=

sin(βb)

β

we find that, depending on the phase γ0, the maximal current at a given field B is

Is,max = Fjm
| sin(2πBbd/Φ0)|

2πBbd/Φ0
. (96)

An even simpler situation appears, if one splits the junction into a double junction: Now,
∮
ds·A =

Φ is the magnetic flux through the cut-out, and

γa − γb =
2π

Φ0

∮

ds · A = 2π
Φ

Φ0
.
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Figure 29: A simple SQUID geometry.
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γa

2πΦ/Φ0

Is,m
ax
/2
Fj

m

Figure 30: Phase relations in Eq.(97).

Hence, the maximal d.c. Josephson current is

Is,max = Fjmmax
γa

[

sin γa + sin

(

γa +
2πΦ

Φ0

)]

.

Is,max = 2Fjm

∣
∣
∣
∣
∣
cos

(

π
Φ

Φ0

)
∣
∣
∣
∣
∣
. (97)

This is the basis to experimentally count flux
quanta with a device called superconducting
quantum interferometer (SQUID).

6.2 The a.c. Josephson effect

We return to (93) and (94), and apply a voltage φ2 − φ1 = V to the junction, that is, γ = (2e/~)V t.
An a.c. Josephson current

js(t) = jm sinωJ t, ωJ = 2eV/~ (98)

results, although a constant voltage is applied. For a voltage of 10 µV a frequency ωJ/2π = 4.8 GHz
is obtained: the a.c. Josephson effect is in the microwave region.

If one overlays a radio frequency voltage over the constant voltage,

φ2 − φ1 = V + Vr cos(ωrt), (99)

one obtains a frequency modulation of the a.c. Josephson current:

js = jm sin

(

ωJ t+
2eVr
~ωr

sin(ωrt)

)

=

= jm

∞∑

n=−∞
J|n|

(

2eVr
~ωr

)

sin(ωJ + nωr)t. (100)

J|n| is the Bessel function of integer index.

To interpret the experiments one must take into account that a non-zero voltage across the junction
causes also a dissipative normal current In = V/R, where R is the resistance of the junction for normal
electrons.

The experimental issue depends on the coupling in of the radio frequency.1 If the impedance of
the radio source is small compared to that of the junction, we have a voltage-source situation, and
the total current through the junction averaged over radio frequencies is

I = Is + V/R, Is = jsF. (101)

1S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).
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ωJ + nωr = 0
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~ωr/2e

V

Figure 31: Josephson current vs. voltage in the voltage-source situation.

If the impedance of the radio source is large compared to the impedance of the Josephson junction,
as is usually the case, we have a current-source situation, where the fed-in total current determines
the voltage across the junction:

V =
~

2e

dγ

dt
= R(I − Is) = R(I − Im sin γ). (102)

Ī

V̄ /R

Im

V̄

Shapiro steps

Figure 32: Josephson current vs. voltage in the current-source situation.

The a.c. Josephson effect yields a possibility of precise measurements of h/e.
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7 MICROSCOPIC THEORY: THE FOCK SPACE

The Schrödinger wavefunction of an (isolated) electron is a function of its position, r, and of the
discrete spin variable, s : φ = φ(r, s). Since there are only two independent spin states for an electron
— the spin component with respect to any (single) chosen axis may be either up (↑) or down (↓) —,
s takes on only two values, + and −, hence φ may be thought as consisting of two functions

φ(r, s) =

(
φ(r,+)
φ(r,−)

)

(103)

forming a spinor function of r. The expectation value of any (usually local) one-particle operator
A(r, s, r′, s′) = δ(r − r′)Â(r, s, s′) is

〈A〉 =
∑

s,s′

∫

d3rφ∗(r, s)Â(r, s, s′)φ(r, s′). (104)

We will often use a short-hand notation x ≡ (r, s).
The Schrödinger wavefunction Ψ(x1 . . . xN ) of a (fermionic) many-particle quantum state must be

totally antisymmetric with respect to particle exchange (Pauli principle):

Ψ(. . . xi . . . xk . . .) = −Ψ(. . . xk . . . xi . . .). (105)

For a piece of a solid, N ∼ 1023, this function is totally incomprehensible and practically inaccessible:
For any set of N values, + or − for each si, it is a function of 3N positional coordinates. Although
by far not all of those 2N functions are independent — with the symmetry property (105) the +- and
−-values can always be brought to an order that all −-values precede all +-values, hence we have only
to distinguish 0, 1, 2, . . . , N −-values, that is (N + 1) cases — and although each of those (N + 1)
functions need only be given on a certain sector of the 3N -dimensional position space — again with
the symmetry property (105) each function need only be given for a certain order of the particle
coordinates for all si = − and for all si = + particles —, it is clear that even if we would be content
with 10 grid points along each coordinate axis we would need ∼ 101023

grid points for a very crude
numerical representation of that Ψ-function. Nevertheless, for formal manipulations, we can introduce
in a systematic manner a functional basis in the functional space of those horrible Ψ-functions.

7.1 Slater determinants

Consider some (for the moment arbitrarily chosen) complete orthonormal set of one-particle spinor
functions ,

φl(x), (φl|φl′) =
∑

s

∫

d3rφ∗l (r, s)φl′(r, s) = δll′ ,

∑

l

φl(x)φ
∗
l (x

′) = δ(x− x′) = δss′δ(r − r′). (106)

They are commonly called (spinor-)orbitals. The quantum number l refers to both the spatial and
the spin state and is usually already a multi-index (for instance (nlmσ) for an atomic orbital or (kσ)
for a plane wave), and we agree upon a certain once and forever given linear order of those l-indices.
Choose N of those orbitals, φl1 , φl2 , . . . , φlN , in ascending order of the li and form the determinant

ΦL(x1 . . . xN ) =
1√
N !

det ‖φli(xk)‖. (107)

L = (l1 . . . lN ) is a new (hyper-)multi-index which labels an orbital configuration. This determinant of
a matrix aik = φli(xk) for every point (x1 . . . xN ) in the spin-position space has the proper symmetry
property (105). In view of (106) it is normalized, if all li are different, and it would be identically
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zero, if at least two of the li would be equal (determinant with two equal raws): Two fermions cannot
be in the same spinor-orbital. This is the compared to (105) very special case of the Pauli principle
(which is the commonly known case).

Now, given a complete set of orbitals (106), we mention without proof that all possible orbital
configurations of N orbitals (107) form a complete set of N -fermion wavefunctions (105), that is, any
wavefunction (105) may be represented as

Ψ(x1 . . . xN ) =
∑

L

CLΦL(x1 . . . xN ) (108)

with certain coefficients CL,
∑

L |CL|2 = 1 (‘configuration interaction’).
For any operator which can be expanded into its one-particle, two-particle- and so on parts as for

instance a Hamiltonian with (possibly spin-dependent) pair interactions,

Ĥ =
∑

i

ĥsis′i
(ri) +

1

2

∑

i6=j
wsis′i,sjs′j

(ri, rj), (109)

the matrix with Slater determinants is

HLL′ = 〈ΦL|Ĥ|ΦL′〉 =
∑

i

∑

P
(lPi|h|l′i) (−1)|P|

∏

j( 6=i)
δlPj l′j

+

+
1

2

∑

i6=j

∑

P
(lPilPj |w|l′j l′i) (−1)|P|

∏

k( 6=i,j)
δlPkl′k

, (110)

where P is any permutation of the subscripts i, j, k, and |P| is its order. The matrix elements are
defined as

(li|h|l′i) =
∑

ss′

∫

d3rφ∗li(r, s)ĥss′(r)φl′
i
(r, s′), (111)

and

(lilj |w|l′j l′i) =
∑

sis′i,sjs′j

∫

d3rid
3rj φ

∗
li(ri, si)φ

∗
lj (rj , sj) wsis′i,sjs′j

(ri, rj) φl′
j
(rj , s

′
j)φl′i(ri, s

′
i). (112)

(Note our convention on the order of indices which may differ from that in other textbooks but leads
to a certain canonical way of writing of formulas later on.) The first line on the r.h.s. of (110) is
non-zero only if the two configurations L and L′ differ at most in one orbital, and the sum over all
permutations P has only one non-zero term in this case, determining the sign factor for that matrix
element. The second line is non-zero only if the two configurations differ at most in two orbitals, and
the sum over all permutations has two non-zero terms in that case: if P is a perturbation with lPk = l′k
for all k 6= i, j, then the corresponding contribution is (1/2)[(lPilPj |w|l′j l′i) − ((lPj lPi|w|l′j l′i)](−1)|P|.
For L = L′ and P = identity (and sometimes also in the general case) the first matrix element is
called direct interaction and the second one exchange interaction.

7.2 The Fock space

Up to here we considered representations of quantum mechanics by wavefunctions with the particle
number N of the system fixed. If this number is macroscopically large, it cannot be fixed at a single
definite value in experiment. Zero mass bosons as e.g. photons may be emitted or absorbed in systems
of any scale. (In a relativistic description any particle may be created or annihilated, possibly together
with its antiparticle, in a vacuum region just by applying energy.) From a mere technical point of
view, quantum statistics of identical particles is much simpler to formulate with the grand canonical
ensemble with varying particle number, than with the canonical one. Hence there are many good
reasons to consider quantum dynamics with changes in particle number.
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In order to do so, we start with building the Hilbert space of quantum states of this wider frame:
the Fock space. The considered up to now Hilbert space of all N -particle states having the appro-
priate symmetry with respect to particle exchange will be denoted by HN . In the last subsection we
introduced a basis {ΦL} in HN . Instead of specifying the multi-index L as a raw of N indices li we
may denote a basis state by specifying the occupation numbers ni (being either 0 or 1) of all orbitals
i:

|n1 . . . ni . . .〉,
∑

i

ni = N. (113)

Our previous determinantal state (107) is now represented as

|ΦL〉 = |0 . . . 01l10 . . . 01l20 . . . 01lN 0 . . .〉.

Two states (113) not coinciding in all occupation numbers ni are orthogonal. HN is the complete
linear space spanned by the basis vectors (113), i.e. the states of HN are either linear combinations
∑ |ΦL〉CL of states (113) (with the sum of the squared absolute values of the coefficients CL equal to
unity) or limits of Cauchy sequences of such linear combinations. (A Cauchy sequence is a sequence
{|Ψn〉} with limm,n→∞ 〈Ψm − Ψn|Ψm − Ψn〉 = 0. The inclusion of all limits of such sequences
into HN means realizing the topological completeness property of the Hilbert space, being extremely
important in all considerations of limits. This completeness of the space is not to be confused with
the completeness of a basis set {φi}.

The extended Hilbert space F (Fock space) of all states with the particle number N not fixed is
now defined as the completed direct sum of all HN . It is spanned by all state vectors (113) for all N
with the above given definition of orthogonality retained, and is completed by corresponding Cauchy
sequences, just as the real line is obtained from the rational line by completing it with the help of
Cauchy sequences of rational numbers.

Note that F now contains not only quantum states which are linear combinations with varying
ni so that ni does not have a definite value in the quantum state (occupation number fluctuations),
but also linear combinations with varying N so that now quantum fluctuations of the total particle
number are allowed too. (For bosonic fields as e.g. laser light those quantum fluctuations can become
important experimentally even for macroscopic N .)

7.3 Occupation number representation

We now completely abandon the awful wavefunctions (105) and will exclusively work with the oc-
cupation number eigenstates (113) and matrix elements between them. The simplest operators are
those which provide just a transition between basis states (113) which are as close to each other as
possible: those which differ in one occupation number only.

The definition of these creation and annihilation operators for fermions must have regard to the an-
tisymmetry of the quantum states and to Pauli’s exclusion principle following from this antisymmetry.
They are defined as

ĉi| . . . ni . . .〉 = | . . . ni − 1 . . .〉ni (−1)
P

j<i
nj , (114)

ĉ†i | . . . ni . . .〉 = | . . . ni + 1 . . .〉 (1 − ni) (−1)
P

j<i
nj . (115)

The usefulness of the sign factors will become clear below. By considering the matrix elements with
all possible occupation number eigenstates (113), it is easily seen that these operators have all the
needed properties, do particularly not create non-fermionic states (that is, states with occupation
numbers ni different from 0 or 1 do not appear: application of ĉi to a state with ni = 0 gives zero,
and application of ĉ†i to a state with ni = 1 gives zero as well). The ĉi and ĉ†i are mutually Hermitian
conjugate, obey the key relations

n̂i| . . . ni . . .〉 ≡ ĉ†i ĉi| . . . ni . . .〉 = | . . . ni . . .〉ni (116)

and
[ĉi, ĉ

†
j ]+ = δij , [ĉi, ĉj ]+ = 0 = [ĉ†i , ĉ

†
j ]+ (117)
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with the anticommutator [ĉi, ĉ
†
j ]+ = ĉiĉ

†
j + ĉ†j ĉi defined in standard way. Reversely, the canonical

anticommutation relations (117) define all the algebraic properties of the ĉ-operators and moreover
define up to unitary equivalence the Fock-space representation (114, 115). (There are, however, vast
classes of further representations of those algebraic relations with a different structure and not unitary
equivalent to the Fock-space representation.)

The basis (113) of the Fock space is systematically generated out of a single basis vector, the
vacuum state |〉 ≡ |0 . . . 0〉 (with N=0) by applying ĉ†-operators:

|n1 . . . ni . . .〉 = . . . ĉ†i . . . ĉ
†
1|〉. (118)

Observe again the order of operators defining a sign factor in view of (117) in agreement with the
sign factors of (114, 115). Since products of a given set of N ĉ†-operators written in any order agree
with each other up to possibly a sign, all possible expressions (118) do not generate more different
basis vectors than those of (107) with the convention on the order of the li as agreed upon there.
Henceforth, by using (118) we need not bother any more about the given linear order of the orbital
indices.

With the help of the ĉ-operators, any linear operator in the Fock space may be expressed. It is
not difficult to demonstrate that the Hamiltonian

Ĥ =
∑

ij

ĉ†i (i|h|j)ĉj +
1

2

∑

ijkl

ĉ†i ĉ
†
j(ij|w|kl)ĉk ĉl (119)

has the same matrix elements with occupation number eigenstates (113) as the Hamiltonian (109))
has with determinantal states in (110). Because of the one-to-one correspondence between the deter-
minantal states (107) and the occupation number eigenstates and because both span the Fock space,
by linearity the Hamiltonians (109) and (119) are equivalent. The building principle of the equivalent
of any linear operator given in the Schrödinger representation is evident from (119).

The Schrödinger wavefunction of a bosonic many-particle quantum state must be totally symmetric
with respect to particle exchange (omission of the minus sign in (105)). The determinants are then
to be replaced by symmetrized products (permanents), with a slightly more involved normalization
factor. The orbitals may now be occupied with arbitrary many particles: ni = 0, 1, 2, . . . . This case
may be realized with bosonic creation and annihilation operators

b̂i| . . . ni . . .〉 = | . . . ni − 1 . . .〉√ni, (120)

b̂†i | . . . ni . . .〉 = | . . . ni + 1 . . .〉
√
ni + 1, (121)

n̂i| . . . ni . . .〉 ≡ b̂†i b̂i| . . . ni . . .〉 = | . . . ni . . .〉ni. (122)

with the canonical commutation relations

[b̂i, b̂
†
j ]− = δij , [b̂i, b̂j ]− = 0 = [b̂†i , b̂

†
j ]−. (123)

The basis states of the Fock space are created out of the vacuum according to

|n1 . . . ni . . .〉 =

(
b̂†1
)n1

√
n1!

· · ·
(
b̂†i
)ni

√
ni!

· · · |〉. (124)

The order of these operators in the product does not make any difference. The choice of factors
on the r.h.s. of (120, 121) not only ensures that (122) holds but also ensure the mutual Hermitian

conjugation of b̂i and b̂†i .

7.4 Field operators

A spatial representation may be introduced in the Fock space by defining field operators

ψ̂(x) =
∑

i

φi(x)âi, ψ̂†(x) =
∑

i

φ∗i (x)â
†
i , (125)
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where the âi mean either fermionic operators ĉi or bosonic operators b̂i. The field operators ψ̂(x) and

ψ̂†(x) obey the canonical (anti-)commutation relations

[ψ̂(x), ψ̂†(x′)]± = δ(x− x′), [ψ̂(x), ψ̂(x′)]± = 0 = [ψ̂†(x), ψ̂†(x′)]±. (126)

They provide a spatial particle density operator

n̂(r) =
∑

s

ψ̂†(r, s)ψ̂(r, s) (127)

having the properties

〈n(r)〉 =
∑

ij

∑

s

φ∗i (r, s)〈â†i âj〉φj(r, s),
∫

d3r n̂(r) =
∑

i

â†i âi. (128)

These relations are readily obtained from those of the creation and annihilation operators, and by
taking into account the completeness and orthonormality (106) of the orbitals φi.

In terms of field operators, the Hamiltonian (109) or (119) reads

Ĥ =
∑

ss′

∫

d3r ψ̂†(r, s) ĥss′(r) ψ̂(r, s′) +

+
1

2

∑

s1s′1s2s
′
2

∫

d3r1d
3r2 ψ̂

†(r1, s1)ψ̂
†(r2, s2) ws1s′1,s2s′2(r1, r2) ψ̂(r2, s

′
2)ψ̂(r1, s

′
1). (129)

It is obtained by combining (119) with (125) and (111, 112).
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8 MICROSCOPIC THEORY: THE BCS MODEL

The great advantage of the use of creation and annihilation or field operators lies in the fact that we
can use them to manipulate quantum states in a physically comprehensible way without explicitly
knowing the wavefunction. We even can think of modified operators of which we know little more than
their algebraic properties. The point is that the occupation number formalism applies for every orbital
set (106). The transition from one set of operators obeying canonical (anti-)commutation relations to
another such set is called a canonical transformation in quantum theory.

8.1 The normal Fermi liquid as a quasi-particle gas

A normal conducting Fermi liquid has a fermionic quasi-particle excitation spectrum which behaves
very much like a gas of independent particles with energies ǫk (for the sake of simplicity we assume it
isotropic in k-space although this assumption is not essential here). Non-interacting fermions would
have a ground state with all orbitals with ǫ < µ occupied and all orbitals with ǫ > µ empty; µ is
the chemical potential. By adding or removing a fermion with ǫ = µ new ground states with N ± 1
fermions are obtained. By adding a fermion with ǫ > µ an excited state is obtained with excitation
energy ǫ − µ. By removing a fermion with ǫ < µ — that is, creating a hole in the original ground
state — an excited state is obtained with excitation energy |ǫ − µ|: first lift the fermion to the level
µ and then remove it without changing the character of the state any more (Figs. 33 and 34).

0

ǫ− µ

kkF

ǫk

quasi-electron

quasi-hole

FIG. 33: Creation of an excited electron and of a hole, resp.

η

kkF

|ǫk − µ|

FIG. 34: Excitation spectrum of a Fermi gas.

The ground state |0〉 of a normal metal has much the same properties: conduction electrons with
ǫ > µ and holes with ǫ < µ may be excited with excitation energies as above. These are not the
original electrons making up the metal together with the atomic nuclei. Rather they are electrons or
missing electrons surrounded by polarization clouds of other electrons and nuclei in which nearly all
the Coulomb interaction is absorbed. We do not precisely know these excitations nor do we know the
ground state |0〉 (although a quite elaborate theory exists for them which we ignore here). We just
assume that they may be represented by fermionic operators with properties like those in the gas:

ǫk < µ : ĉ†kσ|0〉 = 0, ĉ†kσ ĉkσ|0〉 = |0〉, (130)

ǫk > µ : ĉkσ|0〉 = 0, ĉkσ ĉ
†
kσ|0〉 = |0〉, (131)

k is the wavevector and σ the spin state of the quasi-particle.
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Since all interactions present in the ground state |0〉 are already absorbed in the quasi-particle
energies ǫk, only excited conduction electrons or holes exert a remainder interaction. Hence, we may
write down an effective Hamiltonian

ˆ̃H =
∑

kσ

ĉ†kσ(ǫk − µ)ĉkσ +
1

2

ǫk>µ, ǫk′>µ
∑

kσ,k′σ′, q

ĉ†k+qσ ĉ
†
k′−qσ′ wkk′q ĉk′σ′ ĉkσ +

+

ǫk>µ, ǫk′<µ
∑

kσ,k′σ′, q

ĉ†k+qσ ĉk′−qσ′ wkk′q ĉ
†
k′σ′ ĉkσ +

+
1

2

ǫk<µ, ǫk′<µ
∑

kσ,k′σ′, q

ĉk+qσ ĉk′−qσ′ wkk′q ĉ
†
k′σ′ ĉ

†
kσ. (132)

The matrix elements in the three lines are qualitatively different: they are predominantly repulsive
in the first and last line and attractive in the second line; electrons and holes have opposite charges.
With the relations (130, 131) one finds easily

ˆ̃H|0〉 = |0〉Ẽ0, Ẽ0 = 〈0| ˆ̃H|0〉 =

ǫk<µ∑

kσ

(ǫk − µ). (133)

We subtract this constant energy from the Hamiltonian and have

Ĥ ≡ ˆ̃H − Ẽ0, Ĥ|0〉 = 0. (134)

We may create a quasi-particle above µ in this ground state:

ǫk1 > µ : |k1σ1〉 = ĉ†k1σ1
|0〉, Ĥ|k1σ1〉 = |k1σ1〉 (ǫk1 − µ). (135)

The last relation is easily verified with our previous formulas. For kσ 6= k1σ1, we have ĉ†kσ ĉkσ ĉ
†
k1σ1

=

ĉ†k1σ1
ĉ†kσ ĉkσ, and together with ĉk1σ1

ĉ†k1σ1
|0〉 = |0〉 one finds the above result. Likewise

ǫk1 < µ : |k1σ1〉 = ĉk1σ1
|0〉, Ĥ|k1σ1〉 = |k1σ1〉 |ǫk1 − µ| (136)

is obtained. Here, ĉ†k1σ1
ĉk1σ1

ĉk1σ1
= 0, so that one term has to be removed from the sum of (133).

Hence, the single-particle excitation spectrum of our effective Hamiltonian above the state |0〉 is just

ηk = |ǫk − µ|, (137)

and the excited states are |k1σ1〉 of (135, 136), whatever the wavefunction of |0〉 might be.
To say the truth, this all is only approximately right. There are no fermionic operators for which

the relations (130, 131) hold true exactly for the true ground state |0〉. Therefore, the first relation
(133) and the last relations (135, 136) are also not rigorous. The quasi-particles have a finite lifetime
which may be expressed by complex energies ηk. However, for |ηk| ≪ µ the approximation is quite
good in normal, weakly correlated metals.

Consider now a state with two excited particles:

|k1σ1 k2σ2〉 = ĉ†k1σ1
ĉ†k2σ2

|0〉. (138)

To be specific we consider two excited electrons, the cases with holes or with an electron and a hole
are completely analogous. The application of the effective Hamiltonian yields

Ĥ ĉ†k1σ1
ĉ†k2σ2

|0〉 = ĉ†k1σ1
ĉ†k2σ2

|0〉 (ηk1 + ηk2) +
∑

q

ĉ†k1+qσ1
ĉ†k2−qσ2

|0〉 wk1k2q. (139)

The interaction term is obtained with the rule ckiσi
c†kiσi

|0〉 = |0〉. One contribution appears from

kσ = k1σ1, k′σ′ = k2σ2, and another contribution −ĉ†k2+qσ2
ĉ†k1−qσ1

|0〉 wk2k1q from k′σ′ = k1σ1,
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kσ = k2σ2. The minus sign in this contribution is removed by anticommuting the two ĉ†-operators,
and then, by replacing q with −q under the q-sum and observing wk2k1−q = wk1k2q which derives
from w(r1, r2) = w(r2, r1), this second contribution is equal to the first one, whence omitting the
factor (1/2) in front. (This is how exchange terms appear automatically with ĉ-operators since their
anticommutation rules automatically retain the antisymmetry of states.) For the simplicity of writing
we omitted here and in (132) the spin dependence of the interaction matrix element. It is always
present in the effective quasi-particle interaction, and it may always be added afterwards without
confusion. (We might introduce a short-hand notation k for kσ.) The effective interaction of two
quasi-particles with equal spin differs from that of two quasi-particles with opposite spin. The spin-
flip scattering of quasi-particles — an interaction with changing σ1 and σ2 into σ′

1 and σ′
2 — may

often be neglected. Then, the q-sum of (139) need not be completed by additional spin sums.

8.2 The Cooper problem1

From (139) it can be seen that the state (138) is not any more an eigenstate of the effective Hamiltonian,
not even within the approximations made in the previous subsection. The two excited quasi-particles
interact and thus form a correlated pair state. We try to find this pair state of lowest energy for
two electrons (η > 0) within our approximate approach. Since we expect that this state is formed
out of quasi-particle excitations with energies η ≈ 0 our approximations cannot be critical. (The
quasi-particle lifetime becomes infinite for |η| → 0.) We expect that the state lowest in energy has
zero total momentum, hence we build it out of quasi-particle pairs with k2 = −k1:

|ψ〉 =
∑

k

ak |kσ − kσ′〉. (140)

where we assume a fixed combination of σ and σ′ and the yet unknown expansion coefficients to
depend on k only, because the sought state is to be expected to have a definite total spin. (Recall
that we are considering an isotropic metal in this chapter.) We want that this pair state |ψ〉 is an
eigenstate of Ĥ:

Ĥ |ψ〉 = |ψ〉E, Ĥ |ψ〉 =
∑

k

ĉ†kσ ĉ
†
−kσ′ |0〉 2ηkak +

∑

kq

ĉ†k+qσ ĉ
†
−k−qσ′ |0〉 wk−kq ak. (141)

Multiply the last relation with 〈0|ĉ−k′σ′ ĉk′σ and observe 〈0|ĉ−k′σ′ ĉk′σ ĉ
†
kσ ĉ

†
−kσ′ |0〉 = 〈0|ĉ−k′σ′(δkk′ −

ĉ†kσ ĉk′σ)ĉ
†
−kσ′ |0〉 = δkk′〈0|(δkk′ − ĉ†−kσ′ ĉ−k′σ′)|0〉 − 〈0|ĉ−k′σ′ ĉ†kσ(δ−kk′δσσ′ − ĉ†−kσ′ ĉk′σ)|0〉 = δkk′ −

〈0|(δ−kk′δσσ′ − ĉ†kσ ĉ−k′σ′)δ−kk′δσσ′ |0〉 = δkk′ − δ−kk′δσσ′ to obtain

E
(
ak′ − a−k′δσσ′

)
= 2ηk′

(
ak′ − a−k′δσσ′

)
+
∑

q

wk′−q,−k′+q,q

(
ak′−q − a−k′+qδσσ′

)
. (142)

In the last term, we also used again w−k′−q,k′+q,q = wk′+q,−k′−q,−q and then replaced the sum over
q by a sum over −q.

Due to the isotropy of our problem we expect the solution to be an angular momentum eigenstate,
hence ak should have a definite parity. It is immediately seen that a non-trivial solution with even
parity a−k = ak (even angular momentum) is only possible, if δσσ′ = 0, that is for a singlet σ′ = −σ.
For a spin triplet σ′ = σ only a non-trivial solution with odd parity (odd angular momentum) is
possible. To be specific, consider the singlet case. (The triplet case is analogous.) Assume

ak = akYlm(k/k) (143)

with even l. In (142), rename k′ → k, k′ − q → k′. The matrix element wk′,−k′,k−k′ determines the
scattering amplitude from states k,−k into states k′,−k′. we use an expansion

wk′,−k′,k−k′ =
∑

lm

λlw
l
kw

l∗
k′Ylm(k)Y ∗

lm(k′). (144)

1L. N. Cooper, Phys. Rev. 104, 1189 (1956).
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This reduces (142) to

ak =
λlw

l
kC

Elm − 2ηk
, C =

∑

k′

wl∗k′ak′ . (145)

Inserting the left relation into the right one yields

1 = λl
∑

k

|wlk|2
1

Elm − 2ηk
= λlF (Elm). (146)

The sought lowest pair energy corresponds to the lowest solution of F (Elm) = 1/λl.

0

2ηk

E

F

Elm

1
λl
< 0

1
λl
> 0

Figure 35: The function F (E) from Eq. (146).

The function F (Elm)
has poles for Elm = 2ηk
where it jumps from −∞
to +∞. Recall that the
ηk-values are all positive
and start from zero. For
Elm → −∞, F (Elm) ap-
proaches zero from nega-
tive values. Hence, if λl >
0, then the lowest solu-
tion Elm of (146) is posi-
tive and the ground state
|0〉 of the normal metal
is stable. If at least one
λl-value is negative (at-
tractive interaction), then
there is unavoidably a neg-
ative solution Elm of (146):
the ‘excited pair’ has nega-
tive energy and the normal
ground state |0〉 is unsta-
ble against forming of pairs
of bound quasi-particles,
no matter how small |λl|
is (how weak the attrac-
tive interaction is). Pairs
are spontaneously formed
and the ground state recon-
structs. This is the content
of Cooper’s theorem.

If the interaction is cut of at some energy ωc,

wlk =

{
1 for 0 < ηk < ωc
0 elsewhere

, (147)

and the density of states for ηk is nearly constant in this interval, N(η) = N(0), then, with negative
Elm,

∑

k

|wlk|2
1

Elm − 2ηk
= −N(0)

∫ ωc

0

dη
1

|Elm| + 2η
= −N(0)

2
ln

[

|Elm + 2ωc
|Elm|

]

,

hence,

|Elm| =
2ωc

exp
[

2
N(0)|λl|

]

− 1
. (148)
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This yields

|Elm| ≈







2ωc exp

[

− 2

N(0)|λl|

]

N(0)|λl|ωc
for N(0)|λl|

≪
≫ 1 (149)

in the weak and strong coupling limits. In this chapter we only consider the weak coupling limit where
|Elm| is exponentially small.

The whole analysis may be repeated for the case where the pair has a non-zero total momentum
q. In that case the denominator of (146) is to be replaced with Elm(q)− ηk+q/2 − η−k+q/2 where now
|k ± q/2| must be larger than kF . For small q, this condition reduces the density of states in effect in
an interval of thickness |∂η/∂k|q/2 = vF q/2 at the lower η-integration limit; vF is the Fermi velocity.
The result is

Elm(q) ≈ Elm + vF q/2. (150)

In the weak coupling limit, Elm(q) can only be negative for exponentially small q.
We performed the analysis with a pair of particles. It can likewise be done with a pair of holes

with an analogous result.

8.3 The BCS Hamiltonian

Fröhlich1 was the first to point out that the electron-phonon interaction is capable of providing an
effective attraction between conduction electrons in the energy range of phonon energies.

From Cooper’s analysis it follows that, if there is a weak attraction, it can only be effective for
pairs with zero total momentum, that is, between k and −k. With the assumption that the attraction
is in the l = 0 spin singlet channel, this led Bardeen, Cooper and Schrieffer2 to the simple model
Hamiltonian

ĤBCS =
∑

kσ

ĉ†kσ(ǫk − µ)ĉkσ − g

V

µ−ωc<ǫk,ǫk′<µ+ωc∑

kk′

ĉ†k′↑ĉ
†
−k′↓ĉ−k↓ĉk↑. (151)

Here, g > 0 is the BCS coupling constant, and V is the normalization volume. Since the density of
plane-wave states in k-space is V/(2π)3:

∑

k = V/(2π)3
∫
d3k, the matrix element of an n-particle

interaction (appearing in an n-fold k-sum) must be proportional to V −(n−1) in order that the Hamil-
tonian is extensive (∼ V ). The modeled attractive interaction is assumed in an energy range of width
2ωc around the chemical potential (Fermi level in the case T = 0), where ωc is a characteristic phonon
energy for which the Debye energy of the lattice can be taken.

The state |0〉 of (130, 131) cannot any more be the ground state of this Hamiltonian since Cooper’s
theorem tells us that this state is unstable against spontaneous formation of bound pairs with the gain
of their binding energy. The problem to solve is now to find the ground state and the quasi-particle
spectrum of the BCS-Hamiltonian. This problem was solved by Bardeen, Cooper and Schrieffer, and,
shortly thereafter and independently by means of a canonical transformation, by Bogoliubov and
Valatin. Bardeen, Cooper and Schrieffer thus provided the first microscopic theory of superconduc-
tivity, 46 years after the discovery of the phenomenon.

8.4 The Bogoliubov-Valatin transformation3

Suppose the ground state contains a bound pair. Exciting one particle of that pair leaves its partner
behind, and hence also in an excited state. If one wants to excite only one particle, one must annihilate
simultaneously its partner. Led by this consideration, for the quasi-particle operators in the ground
state of (151) an ansatz

b̂k↑ = uk ĉk↑ − vk ĉ
†
−k↓, b̂k↓ = uk ĉk↓ + vk ĉ

†
−k↑

1H. Fröhlich, Phys. Rev. 79, 845 (1950).
2J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
3N. N. Bogoliubov, Nuovo Cimento 7, 794 (1958); J. G. Valatin, Nuovo Cimento 7, 843 (1958).
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is made. uk and vk are variational parameters. Again we consider the isotropic problem and hence
their dependence on k = |k| only. The reason of the different signs in the two relations becomes

clear in a minute. Since for each orbital annihilated by ĉk↑, ĉ−k↓, b̂k↑, b̂−k↓ an r-independent phase
factor may be arbitrarily chosen, uk and vk may be assumed real without loss of generality.1 These
Bogoliubov-Valatin transformations together with their Hermitian conjugate may be summarized as

b̂kσ = uk ĉkσ − σvk ĉ
†
−k−σ, b̂†kσ = uk ĉ

†
kσ − σvk ĉ−k−σ. (152)

We want these transformations to be canonical, that is, we want the new operators b̂kσ, b̂
†
kσ again to

be fermionic operators. One easily calculates

[b̂kσ, b̂k′σ′ ]+ = −ukvk′
(

σ′[ĉkσ, ĉ
†
−k′−σ′ ]+ + σ[ĉ†−k−σ, ĉk′σ′ ]+

)

=

= −ukvk′
(
σ′δk−k′δσ−σ′ + σδ−kk′δ−σσ′

)
= −ukvkδ−kk′(−σ + σ) = 0.

In the first equality it was already considered that annihilation and creation operators ĉ and ĉ†,
respectively, anticommute among themselves. The analogous result for the b̂†-operators is obtained in
the same way. The sign factor σ in the transformation ensures that the anticommutation is retained
for the b̂- and b̂†-operators, respectively. Analogously,

[b̂kσ, b̂
†
k′σ′ ]+ = u2

k[ĉkσ, ĉ
†
k′σ′ ]+ + σσ′v2

k[ĉ
†
−k−σ, ĉ−k′−σ′ ]+ =

(
u2
k + v2

k

)
δkk′δσσ′ ,

hence the condition
u2
k + v2

k = 1 (153)

ensures that the transformation is canonical and the new operators are again fermionic operators.
Multiplying the first relation (152) by uk, replacing in the second one kσ with −k−σ, multiplying

it with σvk, and then adding both results yields with (153) the inverse transformation

ĉkσ = uk b̂kσ + σvk b̂
†
−k−σ, ĉ†kσ = uk b̂

†
kσ + σvk b̂−k−σ. (154)

Observe the reversed sign factor.
The next step is to transform the Hamiltonian (151). With

ĉ†kσ ĉkσ =
(

uk b̂
†
kσ + σvk b̂−k−σ

)(

uk b̂kσ + σvk b̂
†
−k−σ

)

=

= u2
k b̂

†
kσ b̂kσ + v2

k b̂−k−σ b̂
†
−k−σ + σukvk

(

b̂†kσ b̂
†
−k−σ + b̂−k−σ b̂kσ

)

and the anticommutation rules it is easily seen that the single-particle part of the BCS-Hamiltonian
transforms into

2
∑

k

(ǫk − µ)v2
k +

∑

k

(ǫk − µ)(u2
k − v2

k)
∑

σ

b̂†kσ b̂kσ + 2
∑

k

(ǫk − µ)ukvk

(

b̂†k↑b̂
†
−k↓ + b̂−k↓b̂k↑

)

.

It has also been used that under the k-sum k may be replaced by −k. Further, with

B̂k = ĉ−k↓ĉk↑ =
(

uk b̂−k↓ − vk b̂
†
k↑

)(

uk b̂k↑ + vk b̂
†
−k↓

)

=

= u2
k b̂−k↓b̂k↑ − v2

k b̂
†
k↑b̂

†
−k↓ + ukvk

(

b̂−k↓b̂
†
−k↓ − b̂†k↑b̂k↑

)

, (155)

the full transformed BCS-Hamiltonian reads

ĤBCS = 2
∑

k

(ǫk − µ)v2
k +

∑

k

(ǫk − µ)(u2
k − v2

k)
∑

σ

b̂†kσ b̂kσ +

+2
∑

k

(ǫk − µ)ukvk

(

b̂†k↑b̂
†
−k↓ + b̂−k↓b̂k↑

)

− g

V

∑

kk′

B̂†
k′B̂k, (156)

1In fact a phase uk → eiαk uk, vk → e−iαk vk will nearly not change the following analysis, except that u2

k
and v2

k

are to be replaced by |uk|
2 and |vk|

2. The deep influence of this U(1) symmetry which is spontaneously broken in the
BCS ground state |Ψ0〉 will not be considered here. See P. W. Anderson, Phys. Rev. 112, 1900 (1958).
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where for brevity we omitted the bounds of the last sum.

Now, we introduce the occupation number operators

n̂kσ = b̂†kσ b̂kσ (157)

of the b̂-operators and assume analogous to (130, 131) that for properly chosen b̂-operators the ground
state |Ψ0〉 of the BCS-Hamiltonian is an occupation number eigenstate with eigenvalues nkσ = 0.
Then, the energy of a general occupation number eigenstate is found to be

E = 2
∑

k

(ǫk − µ)v2
k +

∑

k

(ǫk − µ)(u2
k − v2

k)(nk↑ + nk↓) −
g

V

[
∑

k

ukvk(1 − nk↑ − nk↓)

]2

. (158)

The nkσ are the eigenvalues (0 or 1) of the occupation number operators (157).

This energy expression still contains the variational parameters uk and vk which are connected by
(153), whence ∂vk/∂uk = −uk/vk. For given occupation numbers, (158) has its minimum for

∂E

∂uk
=

[

−4(ǫk − µ)uk + 2∆
u2
k − v2

k

vk

]

(
1 − nk↑ − nk↓

)
= 0,

∆ =
g

V

∑

k

ukvk
(
1 − nk↑ − nk↓

)
. (159)

Hence, uk and vk are determined by (153) and

2(ǫk − µ)ukvk = ∆
(
u2
k − v2

k

)
. (160)

Their combination yields a biquadratic equation with the solution

u2
k

v2
k

}

=
1

2

[

1 ± (ǫk − µ)
√

(ǫk − µ)2 + ∆2

]

, 2ukvk =
∆

√

(ǫk − µ)2 + ∆2
. (161)

Insertion into (159) results in the self-consistency condition

1 =
g

2V

∑

k

1 − nk↑ − nk↓
√

(ǫk − µ)2 + ∆2
, (162)

which determines ∆ as a function of the BCS coupling constant g, the dispersion relation ǫk of the
normal state ĉ-quasi-particles (in essence the Fermi velocity), and the occupation numbers nkσ of the

b̂-quasi-particles of the superconducting state (in essence the temperature as seen later).
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Figure 36: The functions u and v.

The parameters
uk and vk are de-
picted in the figure
on the right. For-
mally, interchanging
uk with vk would
also be a solution
of the biquadratic
equation. It is, how-
ever, easily seen that
this would not lead
to a minimum of
(158). With (161) it
is readily seen that
the second sum of
(158) is positive def-
inite. Hence, the absolute minimum of energy (ground state) is attained, if all occupation numbers of

the b̂-orbitals are zero.

For the ground state, the self-consistency condition (162) reduces to

1 =
g

2V

∑

k

1
√

(ǫk − µ)2 + ∆2
0

=
gN(0)

2

∫ ωc

−ωc

dω
1

√

ω2 + ∆2
0

=
gN(0)

2
ln

√

ω2
c + ∆2

0 + ωc
√

ω2
c + ∆2

0 − ωc
≈

≈ gN(0)

2
ln

4ω2
c

∆2
0

resulting in

∆0 = 2ωc exp

{

− 1

gN(0)

}

(163)

for the value of ∆ in the ground state (at zero temperature).

If one replaces the last term −(g/V )
∑
B̂†

k′B̂k of the transformed BCS-Hamiltonian (156) by the

mean-field approximation −∆
∑

k

[
B̂k+B̂†

k

]
(recall that ∆ was introduced as ∆ = (g/V )〈Ψ0|

∑

k B̂k|Ψ0〉,
cf. (155, 159)), than it is readily seen that the relation (160) makes the anomalous terms (terms b̂†b̂†

or b̂b̂) of this Hamiltonian vanish: In mean-field approximation the BCS-Hamiltonian is diagonalized
by the Bogoliubov-Valatin transformation, resulting in

Ĥm-f = 2
∑

k

(ǫk − µ)v2
k +

∑

kσ

(ǫk − µ)(u2
k − v2

k)b̂
†
kσ b̂kσ − 2∆

∑

k

ukvk

(

1 −
∑

σ

b̂†kσ b̂kσ

)

=

= const. +
∑

kσ

[

(ǫk − µ)(u2
k − v2

k) + 2∆ukvk

]

b̂†kσ b̂kσ =

= const. +
∑

kσ

ηkσ b̂
†
kσ b̂kσ (164)

with the b̂-quasi-particle energy dispersion relation

ηk =
√

(ǫk − µ)2 + ∆2 (165)

obtained by inserting (161) into the second line of (164).
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Figure 37: Quasi-particle dispersion relation in the
superconducting state.

The dispersion relation ηk together with the
normal state dispersion relation ǫk − µ and
the normal state excitation energy dispersion
|ǫk − µ| is depicted on the right. It is seen
that the physical meaning of ∆ is the gap in
the b̂-quasiparticle excitation spectrum of the
superconducting state. The name bogolons is
often used for these quasi-particles.

The fact that the Bogoliubov-Valatin trans-
formation diagonalizes the BCS-Hamiltonian
at least in mean-field approximation justifies
a posteriori our assumption that the ground
state may be found as an eigenstate of the b̂-
occupation number operators. In the litera-
ture, the key relations (160) are often derived as
diagonalizing the mean-field BCS-Hamiltonian
instead of minimizing the energy expression
(158). In fact both connections are equally im-
portant and provide only together the solution of that Hamiltonian. Clearly, the BCS-theory based
on that solution is a mean-field theory.

From (152) one could arrive at the conclusion that a bogolon consists partially of a normal-state
electron and partially of a hole, and hence would not carry an integer charge quantum. However, as
first was pointed out by Josephson, the true b̂-quasi-particle annihilation and creation operators are

β̂kσ = uk ĉkσ − σvkP̂ ĉ
†
−k−σ, β̂†

kσ = uk ĉ
†
kσ − σvk ĉ−k−σP̂

†, (166)

where P̂ annihilates and P̂ † creates a bound pair with zero momentum and zero spin as considered
in the Cooper problem. Its wavefunction will be considered in the next chapter. Now, a bogolon is
annihilated, that is, a hole-bogolon is created, by partially creating a normal-state hole and partially
annihilating an electron pair and replacing it with a normal-state electron. The second part of the
process also creates a positive charge, whence the hole-bogolon (with |k| < kF ) carries an integer
positive charge quantum. Likewise, an electron-bogolon (with |k| > kF ) is created partially by creating
a normal-state electron and partially by creating an electron pair and simultaneously annihilating a
normal-state electron. Again, the bogolon carries an integer (negative) charge quantum. The P̂ -

operators make the b̂-bogolon be surrounded by a superconducting back flow of charge which ensures
that an integer charge quantum travels with the bogolon. It is positive for |k| < kF and negative for
|k| > kF .

Of course, it remains to show that the new ground state |Ψ0〉 is indeed superconducting.
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9 MICROSCOPIC THEORY: PAIR STATES

In mean-field BCS theory, the ground state is determined by the complete absence of quasi-particles.
With the properties of the Bogoliubov-Valatin transformation, this ground state is found to be the
condensate of Cooper pairs in plane-wave K = 0 states of their centers of gravity. By occupying
quasi-particle states according to Fermi statistics, thermodynamic states of the BCS superconductor
are obtained.

9.1 The BCS ground state

In Section 8.D the BCS ground state |Ψ0〉 was assumed to be an occupation number eigenstate of

n̂kσ = b̂†kσ b̂kσ, and the b̂kσ were determined accordingly. Then, it was found after (162) that all

occupation numbers n̂kσ are zero in the ground state. This implies that 〈Ψ0|b̂†kσ b̂kσ|Ψ0〉 = 0, and
hence

b̂kσ|Ψ0〉 = 0 (167)

for all kσ: The (mean-field) BCS ground state is the (uniquely defined) b̂-vacuum. We show that

|Ψ0〉 =
∏

k

(
uk + vk ĉ

†
k↑ĉ

†
−k↓
)
|〉 (168)

is the properly normalized state with properties (167). The normal metal ground state |0〉 of (130,
131) is

|0〉 =

ǫk<µ∏

kσ

ĉ†kσ|〉 =

ǫk<µ∏

k

ĉ†k↑ĉ
†
−k↓|〉 (169)

and hence has the form (168) too, with uk = 0 for ǫk < µ and uk = 1 for ǫk > µ and the opposite
behavior for vk.

We now demonstrate the properties of (168). Since

〈|
(
uk + vk ĉ−k↓ĉk↑

)(
uk + vk ĉ

†
k↑ĉ

†
−k↓
)
|〉 = u2

k + v2
k = 1,

|Ψ0〉 of (168) is properly normalized. Moreover,

b̂k′↑|Ψ0〉 =

[
∏

k( 6=k′)

(
uk + vk ĉ

†
k↑ĉ

†
−k↓
)

]

(
uk′ ĉk′↑ − vk′ ĉ

†
−k′↓

)(
uk′ + vk′ ĉ

†
k′↑ĉ

†
−k′↓

)
|〉 =

=

[
∏

k( 6=k′)

(
uk + vk ĉ

†
k↑ĉ

†
−k↓
)

]

uk′vk′
(
ĉk′↑ĉ

†
k′↑ĉ

†
−k′↓ − ĉ†−k′↓

)
|〉 =

=

[
∏

k( 6=k′)

(
uk + vk ĉ

†
k↑ĉ

†
−k↓
)

]

uk′vk′
((

1 − ĉ†k′↑ĉk′↑
)
ĉ†−k′↓ − ĉ†−k′↓

)

|〉 = 0 (170)

and analogously b̂k′↓|Ψ0〉 = 0. This completes our proof. Historically, Bardeen, Cooper and Schrieffer
solved the BCS model with the ansatz (168), before the work of Bogoliubov and Valatin.
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9.2 The pair function

Next we find the wavefunctions contained in |Ψ0〉. Recall, that ĉ†kσ creates a conduction electron in

the plane-wave state ∼ exp(ik · r)χσ(s) so that the field operator ψ̂†(rs) is

ψ̂†(rs) =
∑

kσ

ĉ†kσ exp(ik · r)χσ(s). (171)

(That is, rs denotes the center of gravity and the spin of the electron with its polarization cloud which
together make up the ‘conduction electron’.)

The N -particle wavefunction contained in |Ψ0〉 and depending on these variables is

Ψ0(x1, . . . , xN ) = 〈x1 . . . xN |Ψ0〉 = 〈|ψ̂(xN ) · · · ψ̂(x1)
∏

k

(
uk + vk ĉ

†
k↑ĉ

†
−k↓
)
|〉. (172)

For the sake of brevity we suppress the spinors χ, and find

Ψ0(x1, . . . , xN ) =

=
∑

k1...kN

〈| eikN ·rN ĉkNσN
eikN−1·rN−1 ĉkN−1σN−1

· · · eik1·r1 ĉk1σ1

︸ ︷︷ ︸

=0, if not kiσi 6=kjσj for i6=j

∏

k

(

1 + gk ĉ
†
k↑ĉ

†
−k↓

)∏

k

uk |〉 =

=
∑

k1...kN

′
ei(k1·r1+···+kN ·rN ) 〈| ĉkNσN

p
· · ·

p
ĉk1σ1

N/2
∏

k

gk

q
ĉ†k↑

q
ĉ†−k↓

︸ ︷︷ ︸

sum over all possible contractions

|〉
(
∏

k

uk

)

∼

∼
∑

{k2i}

′
(

eik2·(r1−r2)gk2
δσ1−σ2

· · · eikN ·(rN−1−rN )gkN
δσN−1−σN

± · · ·
)

=

∼ Aφ(r1 − r2)χsingletφ(r3 − r4)χsinglet · · ·φ(rN−1 − rN )χsinglet (173)

with
φ(ρ) ∼

∑

k

gke
ik·ρ, gk =

vk
uk
. (174)

In the second line of (173), (171) was inserted for the ψ̂(xi) of (172), and the uks were factored out of
the product of (172) (leaving gk = vk/uk behind in the second item of the factors). The k-products
run over all grid points of the (infinite) k-mesh, e.g. determined by periodic boundary conditions for
the sample volume V , while the sum runs over all possible products for sets of N disjunct k-values out
of that mesh. This disjunct nature of the k-sums is indicated by a dash at the sum in the following
lines. Expansion of the first k-product yields terms with 0, 2, 4, . . . ĉ†-operators of which only the
terms with exactly those N ĉ†-operators that correspond to the N ĉ-operators of an item of the k-sum
left to the product produce a non-zero result between the ĉ-vacuum states 〈| · · · |〉. These results are
most easily obtained by anticommuting all annihilation operators to the right of all creation operators
and are usually called contractions; depending on the original order of the operators, each result is
±1. The product over the uk, which multiplies each contribution and which as previously runs over
all infinitely many k-values of the full mesh, yields a normalizing factor which is independent of the
values of k1, . . . ,kN of the sums. Like each individual factor uk, it depends on the chemical potential
µ and on the gap ∆0. At this point one must realize that the gk are essentially non-zero inside of
the Fermi surface (cf. (161)). Hence, the contribution to Ψ0(x1, . . . , xN ) has a non-negligible value
only for all ki-vectors inside the Fermi surface, and this value increases with an increasing number of
such ki-vectors and decreases again, if an appreciable number of ki-vectors falls outside of the Fermi
surface: the norm of (172) is maximal for N -values such that the k2i occupy essentially all mesh points
inside the Fermi surface. That is, this norm is non-negligible only for those N -values corresponding to
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the electron number in the original normal Fermi liquid: |Ψ0〉 is a grand-canonical state with a sharp
particle-number maximum at the canonical N -value. We did not trace normalizing factors in (173)
and use a sign of approximation in (174) again, assumig φ(ρ) to be normalized.

The result is a state |Ψ0〉 consisting of pairs of electrons in the geminal (pair-orbital) φ(ρ)χsinglet.
In order to analyze what this pair-orbital φ(ρ) looks like, recall that uk and vk may be written as
functions of ∆0 and (ǫk − µ)/∆0 ≈ ~vFk/∆0 (cf. (161)). Hence, gk ≈ g̃(~vFk/∆0), and

φ(ρ) ∼
∫

d3kgke
ik·ρ ∼

∫ ∞

0

dkk2gk

∫ 1

−1

dζeikρζ =

∫ ∞

0

dkk2gk
eikρ − e−ikρ

ikρ
∼

∼ 1

ρ

∫ ∞

0

dkkg̃

(
~vFk

∆0

)

sin kρ ∼ 1

ρ

∫ ∞

0

dxxg̃(x) sin

(
∆0xρ

~vF

)

∼ f(ρ/ξ0),

ξ0 ≈ 1

πδk
=

~vF
π∆0

. (175)

By comparison with (173), ρ is the distance vector of the two electrons in the pair, their distance
on average being of the order of ξ0, while the pair-orbital φ does not depend on the position R of
the center of gravity of the pair: with respect to the center of gravity the pair is delocalized, it
is a plane wave with wave vector K = 0. Moreover, again due to (173), all N/2 ∼ 1023 electron
pairs occupy the same delocalized pair-orbital φ in the BCS ground state |Ψ0〉 : this macroscopically
occupied delocalized (that is, constant in R-space) pair-orbital is the condensate wavefunction of the
superconducting state, and hence the structure (173) of |Ψ0〉 ensures that the solution of the BCS
model is a superconductor.

For a real superconductor, the gap ∆0 can be measured (for instance by measuring thermodynamic
quantities which depend on the excitation spectrum or directly by tunneling spectroscopy. With the
independently determined Fermi velocity vF of electrons in the normal state, this measurement yields
directly the average distance ξ0 of the electrons in a pair which can be compared to the average
distance rs of to arbitrary conduction electrons in the solid given by the electron density. For a
weakly coupled type I superconductor this ratio is typically

ξ0
rs

≈ 103 . . . 104. (176)

In this case, there are 109 . . . 1012 electrons of other pairs in the volume between a given pair: There
is a pair correlation resulting in a condensation of all electrons into one and the same delocalized pair
orbital in the superconducting state, however, the picture of electrons grouped into individual pairs
would be by far misleading.

In order to create a supercurrent, the condensate wavefunction, that is, the pair orbital must be
provided with a phase factor

φ(ρ,R) ∼ eiK·R (177)

by replacing the creation operators in (168) with ĉ†
k+K/2↑ĉ

†
−k+K/2↓. Obviously, it must be Kξ0 ≪ 1

in order not to deform (and thus destroy) the pair orbital itself. Hence, ξ0 has the meaning of the
coherence length of the superconductor at zero temperature.

9.3 Non-zero temperature

The transformed Hamiltonian (164) shows that the bogolons created by operators β̂†
kσ of (166) and

having an energy dispersion law ηk of (165) are fermionic excitations with charge e and spin σ above
the BCS ground state |Ψ0〉. Since they may recombine into Cooper pairs φ, the chemical potential of
the Cooper pairs must be 2µ where µ is the chemical potential of bogolons. Hence, at temperature T
the distribution of bogolons is

nk↑ = nk↓ =
1

eηk/kT + 1
. (178)
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The gap equation (162) then yields (cf. the analysis leading to (163))

1 =
g

2V

∑

k

1 − 2
(
eηk/kT + 1

)−1

ηk
=
gN(0)

2

∫ ωc

−ωc

dω√
ω2 + ∆2

e
√
ω2+∆2/kT − 1

e
√
ω2+∆2/kT + 1

=

= gN(0)

∫ ωc

0

dω√
ω2 + ∆2

tanh

(√
ω2 + ∆2

2kT

)

(179)

where in the last equation the symmetry of the integrand with respect to a sign change of ω was used.
For T → 0, with the limes tanhx→ 1 for x→ ∞, (163) is reproduced.

For increasing temperature, the numerator of (162) decreases, and hence ∆ must also decrease. It
vanishes at the transition temperature Tc, whence

1 = gN(0)

∫ ωc

0

dω

ω
tanh

ω

2kTc
= gN(0)

∫ ωc/2kTc

0

dx

x
tanhx. (180)

Integration of the last integral by parts yields
∫ ωc/2kTc

0

dx

x
tanhx = −

∫ ωc/2kTc

0

dx
lnx

cosh2 x
+ ln

ωc
2kTc

tanh
ωc

2kTc
≈

≈ −
∫ ∞

0

dx
lnx

cosh2 x
+ ln

ωc
2kTc

= ln
4γ

π
+ ln

ωc
2kTc

= ln
2γωc
πkTc

,

where ln γ = C ≈ 0.577 is Euler’s constant. The second line is valid in the weak coupling case
kTc ≪ ωc and the final result for that case is

kTc =
2γ

π
ωc exp

{

− 1

gN(0)

}

=
γ

π
∆0 (181)

0

∆

∆0

Tc
T

Figure 38: The gap as a function of T .

with 2γ/π ≈ 1.13, and 2∆0/kTc =
2π/γ ≈ 3.52.

The gap ∆ as a function of
temperature between zero and Tc
must be calculated numerically
from (178). However, the simple
expression

∆(T ) ≈ ∆0

√

1 −
(
T

Tc

)3

(182)

is a very good approximation.
From the energy expression

(158), the thermodynamic quanti-
ties can be calculated, once ∆(T )
and hence ηk(T ) is given. The
main results are the condensation
energy at T = 0,

Bc(0)2

2µ0
=

1

2
N(0)∆2

0, (183)

yielding the thermodynamic critical field at zero temperature, the specific heat jump at Tc,

Cs − Cn
Cn

≈ 1.43, (184)

and the exponential behavior of the specific heat at low temperatures,

Cs(T ) ∼ T−3/2e−∆0/kT for T ≪ Tc. (185)
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10 MICROSCOPIC THEORY: COHERENCE FACTORS

As already done in the last section, thermodynamic states of a superconductor are obtained by oc-
cupying quasi-particle states with Fermi occupation numbers. External fields, however, in most cases
couple to the ĉ-operator fields. Due to the coupling of ĉ-excitations in a superconductor interference
terms appear in the response to such fields.

10.1 The thermodynamic state

Let {kσ} be any given disjunct set of quasi-particle quantum numbers. Then,

|Ψ{kσ}〉 =
∏

kσ∈{kσ}
β†

kσ|Ψ0〉 (186)

is a state with those quasi-particles excited above the superconducting ground state |Ψ0〉. If there are
many quasi-particle excitations present, they interact with each other and with the condensate in the
ground state (the latter interaction is in terms of the operators P̂ ĉ†kσ and ĉkσP̂

†), and this interaction

leads to the temperature dependence of their energy dispersion law ηk =
√

(ǫk − µ)2 + ∆2 via the
temperature dependence ∆ = ∆(T ). The thermodynamic state is

P̌ =
∑

{kσ}
|Ψ{kσ}〉

∏

kσ∈{kσ} fk

Z
〈Ψ{kσ}|, (187)

where the summation is over all possible sets of quasi-particle quantum numbers,

fk =
1

exp(ηk/kT ) + 1
(188)

is the Fermi occupation number, and Z = Z(T, µ) is the partition function determined by

trP̌ =
∑

{kσ}

∏

kσ∈{kσ} fk

Z
= 1. (189)

As usual, the thermodynamic expectation value of any operator Â is obtained as trÂP̌ . For instance
the average occupation number itself of a quasi-particle in the state k′σ′ is

nk′σ′ = tr
(

β̂†
k′σ′ β̂k′σ′

∑

{kσ}
|Ψ{kσ}〉

∏
fk
Z

〈Ψ{kσ}|
)

=

=
∑

{kσ}
〈Ψ{kσ}|β̂†

k′σ′ β̂k′σ′ |Ψ{kσ}〉
∏
fk
Z

= fk′trP̌ = fk′ . (190)

The state β̂k′σ′ |Ψ{kσ}〉 is obtained from the state |Ψ{kσ}〉 by removing the quasi-particle k′σ′. Hence,

if one factors out fk′ , the remaining sum is again P̌ .

10.2 The charge and spin moment densities

The operator of the q Fourier component of the charge density of electrons in a solid is

n̂(q) = −e
∑

kσ

ĉ†k+qσ ĉkσ = −e
∑

k

(

ĉ†k+q↑ĉk↑ + ĉ†−k↓ĉ−k−q↓
)

. (191)

That of the spin moment density (in z-direction) is

m̂(q) = µB

∑

kσ

ĉ†k+qσσĉkσ = µB

∑

k

(

ĉ†k+q↑ĉk↑ − ĉ†−k↓ĉ−k−q↓
)

. (192)

55



The statistical operator P̌ of a normal metallic state is composed in analogy to (187) from eigenstates
|Ψ{kσ}〉 of ĉ-operators. Then, in calculating thermodynamic averages, each item of the kσ-sum of
(191) and (192) is averaged independently. In the superconducting state, the items in parentheses of
the last of those expressions are coupled and hence they are not any more averaged independently:
there appear contributions due to their coherent interference in the superconducting states |Ψ{kσ}〉.
Those contributions appear in the response of the superconducting state to external fields which couple
to charge and spin densities.

Performing the Bogoliubov-Valatin transformation for the charge density operator yields

∑

k

(

ĉ†k+q↑ĉk↑ + ĉ†−k↓ĉ−k−q↓
)

=

=
∑

k

[(

u|k+q|b̂
†
k+q↑ + v|k+q|b̂−k−q↓

)(

uk b̂k↑ + vk b̂
†
−k↓

)

+

+
(

uk b̂
†
−k↓ − vk b̂k↑

)(

u|k+q|b̂−k−q↓ − v|k+q|b̂k+q↑
)]

=

=
∑

k

[

u|k+q|uk b̂
†
k+q↑b̂k↑ + v|k+q|vk b̂−k−q↓b̂

†
−k↓ + u|k+q|vk b̂

†
k+q↑b̂

†
−k↓ + v|k+q|uk b̂−k−q↓b̂k↑ +

+uku|k+q|b̂
†
−k↓b̂−k−q↓ + vkv|k+q|b̂k↑b̂

†
k+q↑ − ukv|k+q|b̂

†
−k↓b̂

†
k+q↑ − vku|k+q|b̂k↑b̂−k−q↓

]

=

=
∑

k

[(

u|k+q|uk − v|k+q|vk
)(

b̂†k+q↑b̂k↑ + b̂†−k↓b̂−k−q↓
)

+

+
(

u|k+q|vk + ukv|k+q|
)(

b̂†k+q↑b̂
†
−k↓ − b̂k↑b̂−k−q↓

)]

In obtaining the last equality some operator pairs were anticommuted which leads to the final result

n̂(q) = −e
∑

k

[(

u|k+q|uk − v|k+q|vk
)(

b̂†k+q↑b̂k↑ + b̂†−k↓b̂−k−q↓
)

+

+
(

u|k+q|vk + ukv|k+q|
)(

b̂†k+q↑b̂
†
−k↓ − b̂k↑b̂−k−q↓

)]

. (193)

An analogous calculation yields

m̂(q) = µB

∑

k

[(

u|k+q|uk + v|k+q|vk
)(

b̂†k+q↑b̂k↑ − b̂†−k↓b̂−k−q↓
)

+

+
(

u|k+q|vk − ukv|k+q|
)(

b̂†k+q↑b̂
†
−k↓ + b̂k↑b̂−k−q↓

)]

. (194)

The first line of these relations reflects the above mentioned coupling between ĉ-states, and the second
reflects the coupling to the condensate. Both lines contain coherence factors composed of u and v.

10.3 Ultrasonic attenuation

As an example of a field (external to the electron system) coupling to the charge density we consider
the electric field caused by a lattice phonon. The corresponding interaction term of the Hamiltonian
is

ĤI =
g√
V

∑

q

√
ωq

(
â†−q + âq

)
n̂(q), (195)

where g is a coupling constant relating the electric field of the phonon to its amplitude, V is the
volume, ω is the phonon frequency and â† its creation operator.
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We consider the attenuation of ultrasound with ~ωq < ∆, then, in lowest order pair processes do
not contribute. According to Fermi’s golden rule the phonon absorption rate may be written as

Ra(q) =
2π

~
tr
(
ĤIδ(Ef − Ei)ĤI P̌

)
=

=
4πg2

~V
ωqnq

∑

k

(

u|k+q|uk − v|k+q|vk
)2

fk(1 − f|k+q|)δ(η|k+q| − ηk − ~ωq). (196)

Here, Ef and Ei are the total energies of the states forming the ĤI -matrix elements and nq is the
phonon occupation number of the thermodynamic state which in this case in extension of (187) also
contains phononic excitations in thermic equilibrium. Half of the result of the last line is obtained
from the first term in the first line of (193). After renaming −k − q → k′, the second term yields the
same result. The phonon emission rate is analogously

Re(q) =
2π

~
tr
(
ĤIδ(Ef − Ei)ĤI P̌

)
=

=
4πg2

~V
ωqnq

∑

k

(

u|k+q|uk − v|k+q|vk
)2

f|k+q|(1 − fk)δ(η|k+q| − ηk − ~ωq). (197)

With fk(1 − f|k+q|) − f|k+q|(1 − fk) = fk − f|k+q|, the attenuation rate is

dnq

dt
= −4πg2

~V
ωqnq

∑

k

(

u|k+q|uk − v|k+q|vk
)2

(fk − f|k+q|)δ(η|k+q| − ηk − ~ωq). (198)

The attenuation in the normal state is

dnq

dt
= −4πg2

~V
ωqnq

∑

k

(fk − f|k+q|)δ(ǫ|k+q| − ǫk − ~ωq). (199)

From a measurement of the difference, ∆(T ) can be inferred.

10.4 The spin susceptibility

With the interaction Hamiltonian

ĤI = −H(−q)m̂(q) + c.c., (200)

where H is an external magnetic field, the expectation value of the energy perturbation is obtained
as

∆E(q) = tr
(

ĤI(Ef − Ei)
−1ĤI P̌

)

. (201)

The susceptibility is

χ(q) = −d
2∆E(q)

dH(−q)
= −2µ2

B

∑

k

[
(

u|k+q|uk + v|k+q|vk
)2 f|k+q| − fk

η|k+q| − ηk
+

+
(

u|k+q|vk − ukv|k+q|
)2 1 − fk − f|k+q|

ηk + η|k+q|

]

. (202)

The susceptibility drops down below Tc and vanishes exponentially for T → 0.

Coherence factors appear in similar manners in many more response functions as in the nuclear
relaxation time, in the diamagnetic response, in the microwave absorption, and so on.
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