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1. INTRODUCTION 

The applications of computers to biological and biomedical problem solving goes back to the very 

beginnings of computer science, automata theory [1], and mathematical biology [2]. With the advent 

of more versatile and powerful computers, biological and biomedical applications of computers have 

proliferated so rapidly that it would be virtually impossible to compile a comprehensive review of all 

developments in this field.  Limitations of computer simulations in biology have also come under 

close scrutiny, and claims have been made that biological systems have limited information 

processing power [3]. Such general conjectures do not, however, deter biologists and biomedical 

researchers from developing new computer applications in biology and medicine. Microprocessors 

are being widely employed in biological laboratories both for automatic data acquisition/processing 



and modeling; one particular area, which is of great biomedical interest, involves fast digital image 

processing and is already established for routine clinical examinations in radiological and nuclear 

medicine centers, Powerful techniques for biological research are routinely employing dedicated, on-

line microprocessors or array processors; among such techniques are: Fourier-transform nuclear 

magnetic resonance (NMR), NMR imaging (or tomography), x-ray tomography, x-ray diffraction, 

high performance liquid chromatography, differential scanning calorimetry and mass spectrometry. 

Networking of laboratory microprocessors linked to a central, large memory computer is the next 

logical step in laboratory automation. Previously unapproachable problems, such as molecular 

dynamics of solutions, many-body interaction calculations and statistical mechanics of biological 

processes are all likely to benefit from the increasing access to the new generation of 

"supercomputers". In view of the large number, diversity and complexity of computer applications in 

biology and medicine, we could not review in any degree of detail all computer applications in these 

fields; instead, we shall be selective and focus our discussion on suggestive computer models of 

biological systems and those fundamental aspects of computer applications that are likely to 

continue to make an impact on biological and biomedical research. Thus, we shall consider unifying 

trends in mathematics, mathematical logics and computer science that are relevant to computer 

modeling of biological and biomedical systems. The latter are pitched at a more formal, abstract 

level than the applications and, therefore, encompass a number of concepts drawn from the abstract 

theory of sets and relations, network theory, automata theory, Boolean and n-valued logics, abstract 

algebra, topology and category theory. The purpose of these theoretical' sections is to provide the ans 

for approaching a number of basic biological questions:  

(1) What are the essential characteristics of a biological organism as opposed to an automaton?  

(2) Are biological systems recursively computable?  



(3) What is the structure of the simplest (primordial) organism?  

(4) What are the basic structures of neural and genetic networks?  

(5) What are the common properties of classes of biological organisms? (6) Which system representations are 

adequate for biodynamics?  

(7) What is the optimal strategy for modifying an organism through genetic engineering? (8) What is the 

optimal simulation of a biological system with a digital or analog computer?  

(9) What is Life?  
The present analysis of relational theories in biology and computer simulation has also inspired a number of 

new results which are presented here as "Conjectures" since their proofs are too lengthy and too technical to 

be included in this review. In order to maintain a self-contained presentation-the definitions of the main 

concepts are given, with the exception of a minimum of simple mathematical concepts.  

2. COMPUTER MODELS OF BRANCHING PROCESSES AND TREE-LIKE MORPHOLOGY  

One of the simplest but nontrivial applications of computers in biology and medicine has 

been the generation of "trees" or patterns of branching. Such patterns of branching are common to 

arteries, bronchi, trees and rivers, and have attracted considerable attention[4-22]. Computer 

simulation of the geometry of trees, based on branching angles, length ratio of branches and 

differential rates of growth, has been quite successful introducing models which are closely 

resembling the morphology of biological systems[7, -19]. In such models of trees, the branching 

ratio was found to be variable and, therefore, of little descriptive value. A computer program that 

generates dichotomously various branching trees was recently described[22] and it was employed to 

investigate if the human bronchial tree could be adequately modelled.  

 

Generation of trees by the computer  

According to Horsfield and Thurlbeck[22], each branch is encoded in the computer by providing the 

three-dimensional (3D) coordinates of the branch ends. Horsfield and Cuming[5] order the branches 



by starting at the peripheral ones, which are assigned "order “ and the order is increased by 1 unit at 

each junction [Fig. l(a)] after Horsfield and lurlbeck[22]). The asymmetry of the branching is 

represented by an asymmetry parameter (3) which is the difference in order between the two 

daughter branches. An example asymmetry of branching which was given by Horsfield and 

Thurlbeck is reproduced Fig. l(b). A stem branch is generated by inputing its coordinates and stating 

its Horsfield der; the stem bifurcates in the x-y plane, the order of the major daughter branch being le 

digit less than the parent branch by definition, while the order of the minor branch defined by using a 

value of 3. By defining the angles of branching and the lengths, the coordinates of the ends of the 

daughter branches can also be calculated. The daughter branches bifurcate in turn until an order-1 

branch is generated recursively, and then bifurcation stops on that selected pathway. The value of 8 

for a given bifurcation is determined by a pseudorandom number generated by a digital computer, 

and takes values between 0 and 9. The probability for a given value of 8 to be realized in a given tree 

from e pseudorandom string of numbers is defined on input; for example if 8 = 0, the probability is 

zero. 

  

3. Computer Models of Neural Networks. 

An extensive review of neural networks with approximately 100 references up to 1986 is presented 

summarizing the results reported to be relevant to basic brain control functions. Alternate approaches based 

on an enzymatic network in single functional neurons by M. Conrad were also reviewed in detail, and were 

later considered by other authors to lead to tthe possibility of quantum processing and the emergence of 

consciousness. 

 

4. COMPUTER MODELS OF CARCINOGENESIS AND CANCER CHEMOTHERAPY  

Computer simulation studies of carcinogenesis are closely related to theoretical studies of 

the cell cycle, the control of cell division and the growth of cell populations [43-52].In a 



computer model of erythroleukemia, Düchting[51] considered a control process ( cell 

proliferation of the form shown in Fig. 8 (also see Fig. 9). The simulation of this process 

was performed on an AEG- Telefunken TR440 digital computer using an ASIM computer 

program. This program is written in the block-oriented language for Analogous SIMulation. 

The digital logic device in this model ascertains and registers the presence of each cell in a 

specific compartment; the analog transfer elements were integrators and switching 

components. The model is therefore a combination of analog and digital devices, and the 

simulation process is in this case more complex than in the more popular, digital-only 

models. This model mimicked malignancy through an uncontrollable increase in 

compartment population, but as many other computer models of carcinogenesis, is limited 

by the lack of a detailed, experimental analysis of the parameters controlling 

carcinogenesis. An attempt to introduce such parameters into a model of malignant "stem" 

cell growth was recently made by Rittgen [53]. Rittgen's basic model is sketched in Fig. 10, 

where G1, S, G2, M, Q1 and Q2 are cell cycle phases; Q1 and Q2 are the resting phases, 

while S is the synthesis phase. Mitosis starts either after G2 or after Q2, and the daughter 

cells begin in the resting phase Q1. The simulation was executed with a special stochastic 

system [54]. With this model, it was possible to calculate the number of malignant 

proliferating, maturing and mature cells, as a function of time. The simulated malignant cell 

population growth was exponential, with growth velocities depending on the cell cycle 

parameters. 



 

Computer Models and Cancer Chemotherapy. 

A model conceptually similar to the Rittgen simulation, but simpler, was applied to the analysis of 

cancer chemotherapy by Chuang and Soong [55]). A FORTRAN IV program was developed for a 

PDP 15!76 computer which was employed for simulations of scheduled chemical treatments with 

cell-cycle specific, phase specific and cycle non- specific drugs. It also allowed for Gompertzian 

tumor growth and variation of kinetic parameters in relation to tumor size. Typical simulated curves 

of synchronization and thymidine blocking effects in cancer chemotherapy are discussed in Ref. 

[55]. Complications, not considered in this model, can arise in cancer chemotherapy due to the fact 

that tumor cells can begin to divide parasynchronously following interruption of the treatment. The 

agreement between this model and the two experimental animal tumor systems, L1210 leukemia and 

Lewis lung carcinoma, cannot yet be considered as conclusive because of the paucity of 

experimental data available.  In an interesting report by Swan and Vincent[56], the problem of 

minimizing the total amount of cycle nonspecific cytotoxic drug in the body of the patient was 

investigated. Their solution was in terms of optimal control theory and their theoretical results were 

compared with clinical data stored in a computer at the Arizona Medical Center. For patients 

suffering from bone cancer known as multiple myeloma, a treatment with melphalan, combined with 

intravenously administered cyclophosphamide, and an oral, fiXed dosage of prednisone was 

pursued; then the optimal control data was compared with the clinical data. The optimal treatment 

suggested by the Swan and Vincent model [56] is a relatively small dose at the beginning, followed 

by a gradually increasing dose as the cancer cells decrease in number. The total amount of drug 

accumulated with such a treatment appears to be a minimum but the authors warn that their model 

assumes that the drug effectiveness parameter does not change significantly due to a change in the 



drug "program" ; they also suggest that clinical tests should be run to determine the nature and extent 

of variation of the drug effectiveness parameter. As in the model of Chuang and Soong[55], tumor 

growth was assumed to be Gompertzian, similarly to the earlier studies of Laird[57] and also as in 

the clinical applications of the Gompertz model by Sullivan and Salmon[58] to tumor growth and 

regression in IgG multiple myeloma in human subjects. In a subtle development of the optimal 

control approach to cancer chemotherapy, Zietz and Nicolini [59] proposed that the optimum 

treatment should keep the tumor size low and the normal population high, for as long as possible, 

during the treatment, while achieving tumor cell kill.  There mathematical model is also based upon 

the Gompertzian growth  and the earlier studies of Nicolini and Kendal [60] and Nicolini et al. [61]; 

the model leads to an expresssion of switching times for drug administration, and rest, which could. 

Computer models and automata theory in biology and medicine (152) could not be explicitly 

evaluated. Therefore, it was suggested that computer analysis will be needed to determine the 

optimum treatment strategy (optimal trajectory), and the numerical values of the switching function. 

An algorithm was then developed to uniquely define the switching function. This algorithm, when 

applied to two cell populations for a treatment period of 21 units, and a weighting of 4: 1 normal-to-

tumor cell division rate predicted that the optimum treatment would be dose administration for the 

first 8 time units, followed by a rest for the next 13 time units. It was pointed out, however, that 

additional computations will be needed to improve this algorithm. The model was claimed to be also 

suitable, with some modifications, for the optimization of chemotherapy with cycle-specific drugs.  

A microprocessor model of perturbed cell renewal  

Duchting[62] re-approached the problem of computer simulation of carcinogenesis a the more basic level of 

perturbed cell renewal by considering the interactions between adjacent cells on a two-dimensional grid. Such 

questions were also considered previously by Gardner[63], Lindenmayer[64], Reshodko and Bures[65], 

Ransom[66] and Arbib[67] The approach is close to what Arbib describes as a "tessellation" model, and 



involve~ basic concepts from automata theory (see also Sec. 10). Duchting's simulation of disturbed cell 

renewal [62] was carried out by means of an Intel 8080 microprocessor and we expect that his model could 

also be programmed on the now popular IBM PC/ ATT microprocessors.  The organization of the programs 

run by the Intel 8080 for this simulation is reproduce< in Fig. 13 from Duchting[62]. This simulation yielded 

some interesting results, such a' the onset of metastasis after "surgery" even if only one "malignant" cell is left 

amongst the "normal" cells of the grid (Fig. 6 in Ref. [62]); in the case of no surgery , the mode predicts that 

normal cells would eliminate the few malignant cells present. Related to this tessellation approach to 

population growth, Lieberman considered in an earlier report [68] a stochastic model in which the population 

distribution is confined within a limited space. The simulation was carried out with an IBM Model 360 and 

showed that the size and abundance of organisms are linked by a logarithmic relationship if the organisms are 

limited by a single resource. It would be interesting to adapt this model to the study of tumor growth, under 

conditions of limited nutrient supply since the tumor cell proliferation is strictly dependent upon the local 

availability of nutrients supplied by tumor vessels[69]. The tumor vascularization itself is, however, induced 

by the elaboration of a tumor antigenic factor (T AV by the tumor cells[70]. In a detailed model of tumor 

growth, Liotta et al.[71] considered both vascularization and necrosis of tumors by taking into account both 

diffusion an( proliferation of tumor cells. Coupled diffusion equations with a nonlinear source and sine terms 

described the proliferation, migration and necrosis of tumor cells. According to Liotta et al.[71], their 

diffusion model is superior to lumped parameter models of tumor growth such as that .of Saidel et al.[72] 

because "the lumped-parameter simulation doe: not yield any information about the spatial distribution of the 

tumor cells and vessels in the tumor.  The results of the diffusion model are qualitatively similar to those 

determined by the experiment (Figs. I and 3, respectively, in Ref. [71]). One major limitation of this diffusion 

model of tumor growth is that the tumor was assumed to be spherically sym metric. Other limitations of the 

model are discussed in Ref. [71]. 

 

Computer simulation studies of carcinogenesis are closely related to theoretical studies of the cell 

cycle, the control of cell division and the growth of cell populations [43-52]. In a computer model of 

erythroleukemia, Düchting [51] considered a control process (cell proliferation of the form shown in 

Fig. 8 (also see Fig. 9 and our recent , 2004 Reprint on Cell Cycling changes in Carcinogenesis). The 

simulation of this process was performed on an AEG- Telefunken TR440 digital computer using the 



ASIM computer program listed in Table 2.  This program is written in the block-oriented language 

for Analogous SIMulation. 

 

Figure 8.  Block diagram of a control model of cell proliferation (from Ref. [51]). r is the reference 

input, for examples, hormones; c is the controlled variable, such as the deviation of the number of 

cells from the steady –state value; d represents disturbances such as carcinogens: (u) represents the 

control signal, for example, enzymes with specific regulatory roles.  

 

 

 



 



 

 

 

 

The digital logic device in this model ascertains and registers the presence of each cell in a specific 

compartment; the analog transfer elements were integrators and switching components. The model is 

therefore a combination of analog and digital devices, and the simulation process is in this case more 

complex than in the more popular, digital-only models. This model mimicked malignancy through 

an uncontrollable increase in compartment population, but as many other computer models of 

carcinogenesis, is limited by the lack of a detailed, experimental analysis of the parameters 

controlling carcinogenesis. An attempt to introduce such parameters into a model of malignant 

"stem" cell growth was recently made by Rittgen [53]. Rittgen's basic model is sketched in Fig. 10, 

where G1, S, G2, M, Q1 and Q2 are cell cycle phases; Q1 and Q2 are the resting phases, while S is the 

synthesis phase. Mitosis starts either after G2 or after Q2 and the daughter cells begin in the resting 

phase Q1. The simulation was executed with a special stochastic system [54]. 

With this model it was possible to calculate the number of malignant proliferating, maturing 

and mature cells, as a function of time. The simulated malignant cell population growth was 

exponential, with growth velocities depending on the cell cycle parameters. 

 

Computer and cancer chemotherapy. 

A model conceptually similar to the Rittgen simulation, but simpler, was applied to the analysis of 

cancer chemotherapy (Fig. 11, after Chuang and Soong [55]). A FORTRAN IV program was 

Figure 9. A model of the erythropoiesis control system (from Ref. [51]). Y1= determined stem 
cells; Y3= committed stem cells; Y41 = proerythroblasts; Y42 = macroblasts; Y44 = 
polychromatic erythroblasts; Y45 = orthochromatic erythroblasts; Y5 = orthochromatic 
erythroblasts; Y6= erythrocytes/reticulocytes; C= controlled variables = red blood cells: R= 
reference input = desired number of erythrocytes (related to the required tissue oxygen); E= 
error or deviation = quantity of erythropoeitin : D = disturbance(s) such as viruses, x-rays UV, 
vitamin or iron deficiency, bleeding, sudden hypoxia. 



developed for a PDP 15/76 computer which was employed for simulations of scheduled chemical 

treatments with cell-cycle specific, phase specific and cycle non- specific drugs. It also  

 

 

allowed for Gompertzian tumor growth and variation of kinetic parameters in relation to tumor size. 

Typical simulated curves of synchronization and  thymidine blocking effects in cancer chemotherapy 

are reproduced in Fig. 12 from Ref. [55].  

 

 



Complications, not considered in this model, can arise in cancer chemotherapy due to the fact 

that tumor cells can begin to divide parasynchronously following interruption of the treatment. The 

agreement between this model and the two experimental animal tumor systems, L1210 leukemia and 

Lewis lung carcinoma, cannot yet be considered as conclusive because of the paucity of 

experimental data available.  

In an interesting report by Swan and Vincent [56], the problem of minimizing the total amount of 

cycle nonspecific cytotoxic drug in the body of the patient was investigated. Their solution was in 

terms of optimal control theory and their theoretical results were compared with clinical data stored 

in a computer at the Arizona Medical Center. For patients suffering from bone cancer known as 

multiple myeloma, a treatment with melphalan, combined with intravenously administered 

cyclophosphamide, and an oral, fixed dosage of prednisone was pursued; then the optimal control 

data was compared with the clinical data. The optimal treatment suggested by the Swan and Vincent 

model [56] is a relatively small dose at the beginning, followed by a gradually increasing dose as the 

cancer cells decrease in number. The total amount of drug accumulated with such a treatment 

appears to be a minimum but the authors warn that their model assumes that the drug effectiveness 

parameter does not change significantly due to a change in the drug "program"; they also suggest 

that clinical tests should be run to determine the nature and extent of variation of the drug 

effectiveness parameter. As in the model of Chuang and Soong [55], tumor growth was assumed to 

be Gompertzian, similarly to the earlier studies of Laird [57] and also as in the clinical applications 

of the Gompertz model by Sullivan and Salmon [58] to tumor growth and regression in IgG multiple 

myeloma in human.  In a subtle development of the optimal control approach to cancer 

chemotherapy, Zietz and Nicolini [59] proposed that the optimum treatment should keep the tumor 

size low and the normal population high, for as long as possible, during the treatment, while 



achieving tumor cell kill.  There mathematical model is also based upon the Gompertzian growth  

and the earlier studies of Nicolini and Kendal [60] and Nicolini et al. [61]; the model leads to an 

expression of switching times for drug administration, and rest, which could. not be explicitly 

evaluated. Therefore, it was suggested that computer analysis will be needed to determine the 

optimum treatment strategy (optimal trajectory), and the numerical values of the switching function. 

An algorithm was then developed to uniquely define the switching function. This algorithm, when 

applied to two cell populations for a treatment period of 21 units, and a weighting of 4: 1 normal-to-

tumor cell division rate predicted that the optimum treatment would be dose administration for the 

first 8 time units, followed by a rest for the next 13 time units. It was pointed out, however, that 

additional computations will be needed to improve the algorithm. The model was claimed to be also 

suitable, with some modifications, for the optimization of chemotherapy witt cycle-specific drugs.  

 

 

Fig 10.  Cell cycle scheme for a stem cell (according to Rittgen [53]).  G1, S, G2, and M are known 

steps of the cell cycle, with G1 and G2 representing the “gap” intervals, S representing the synthesis 

step, and M representing the mitosis.  Q1 and Q2 are resting phases. 



Figure 11.  A model of tumor growth and of the drug treatment effects (according to Ref [55]).  The 

proliferative compartment has the four phases G1, S, G2, and M.  Cell may die either naturally or 

because of the drug treatment, as determined by the functions Li(t), i=1,..., 5.  When leaving G1, S, 

G2, M or G0 such cell enter the dead cell compartment D.  After each binary fission, (2 – A) cell 

enter the nonpoliferative compartment G0, which A cells ( 21 ≤≤ A  ) continue their proliferation 

cycle.  Loss from the tumor site is determined by Ih.   A proportion p of G0-cells may re-enter the 

proliferation cycle at G1. 



 

Figure 12.  Simulated CL curves of synchhronization and thymidine blocking effects in cancer 

chemotherapy are shown together with observed values (from Ref [55]). 

 

A microprocessor model of perturbed cell renewal  

Düchting [62] re-approached the problem of computer simulation of carcinogenesis at the more 

basic level of perturbed cell renewal by considering the interactions between adjacent cells on a two-

dimensional grid. Such questions were also considered previously by Gardner [63], Lindenmayer 



[64], Reshodko and Bures [65], Ransom [66] and Arbib [67].  The approach is close to what Arbib 

describes as a "tessellation" model, and involves basic concepts from automata theory (see also Sec. 

10). Düchting’s simulation of disturbed cell renewal [62] was carried out by means of an Intel 8080 

microprocessor and we expect that his model could also be programmed on the now popular IBM 

PC/ ATT microprocessor  The organization of the programs run by the Intel 8080 for this simulation 

is reproduced in Fig. 13 from Düchting [62]. This simulation yielded some interesting results, such 

as the onset of metastasis after "surgery" even if only one "malignant" cell is left amongst the 

"normal" cells of the grid (Fig. 6 in Ref. [62]). In the case of no surgery, the model predicts that 

normal cells would eliminate the few malignant cells present. Related to this tessellation approach to 

population growth, Lieberman considered in an earlier report [68] a stochastic model in which the 

population distribution is confined within a limited space. The simulation was carried out with an 

IBM Model 360 and showed that the size and abundance of organisms are linked by a logarithmic 

relationship if the organisms are limited by a single resource.  

 



 

Fig. 13 A. Organization of the Intel 8080 program for modeling cell renewal (according to Düchting 

[62]). B Grid configuration of cells, or tessellation model of cell renewal (after Düchting[62]).  

It would be interesting to adapt this model to the study of tumor growth, under conditions of 

limited nutrient supply since the tumor cell proliferation is strictly dependent upon the local 

availability of nutrients supplied by tumor vessels[69]. The tumor vascularization itself is, however, 

induced by the elaboration of a tumor antigenic factor TAV by the tumor cells[70]. In a detailed 

model of tumor growth, Liotta et al.[71] considered both vascularization and necrosis of tumors by 

taking into account both diffusion an( proliferation of tumor cells. Coupled diffusion equations with 

a nonlinear source and source terms described the proliferation, migration and necrosis of tumor 

cells. According to Liotta et al.[71], their diffusion model is superior to lumped parameter models of 



tumor growth such as that .of Saidel et al.[72] because "the lumped-parameter simulation does not 

yield any information about the spatial distribution of the tumor cells and vessels is the tumor”. The 

results of the diffusion model are qualitatively similar to those determined by the experiment (Figs. I 

and 3, respectively, in Ref. [71]). One major limitation of this diffusion model of tumor growth is 

that the tumor was assumed to be spherically symmetric. Other limitations of the model are 

discussed in Ref. [71]. 

 
5. AUTOMATA THEORY AND COMPUTABLE MODELS OF BIOLOGICAL SYSTEMS 
 
The formal theory of automata or sequential machines is considered in the context of network models of 
biological systems. 
The collection of discrete automata semigroups is organized as an abstract category whose algebraic, 
universal properties have been determined and that presents realizability problems ressembling those of the 
simplest biomathematical network models  
 
6. GENERAL COMPUTABILITY QUESTION FOR BIODYNAMICS, NEUROSCIENCES AND 
COGNITIVE-RELATED FIELDS 
 
Conjecture:  
 
Generalized, algebraic-symbolic computations of biodynamics may become possible with a topological 
semigroup machine (Baianu, 1971a, b) such as a quantum computer.  On the other hand, existing digital 
computers are known to be limited in their ability to compute complex biodynamics such as the cell network 
dynamics.  
 
7. Łukasiewicz Algebraic Logic Networks of Genomes 

 
A detailed review of both Boolean and Łukasiewicz logic networks of the genome, or genetic network models 
are presented with a view to future applications such as the dynamic applications to the human genome 
analysis. Related spin offs may occur in n-state models of non-random, nonlinear neural networks by 
modeling cognitive systems with categories of Łukasiewicz Logic Algebras. 
 
8. (M,R)-Systems Models and the simplest Metabolic-Repair-Replication Models 
  
Generalizations of Robert Rosen’s (M,R)-system models are discussed in terms of general categories whose 
objects are not restricted to sets, by endowing such objects with algebraic and topological structures as in the 
theory of organismic supercategories (Baianu, 1970; 1971; 1973, 1974; 1980; 1983; 1985). Further extensions 
of (M,R)-systems to self-replication and reverse-transcription are also constructed and their categorical-
algebraic properties are derived. 
 
CONCLUSIONS 
 



Several answers provided to the questions posed in the introduction are summarized and conclusions are drawn 
concerning the future directions of computer modeling and automata theory in biology and medicine, such as the 
nature of the diagnostic, cognitive processes currently employed in medicine that could benefit from the 
Luksiewicz Logic Algebraic models developed in the context of non-random, nonlinear Genetic Networks. The 
computability Conjecture for Biodynamic Models and networks is again stated in the broader cognitive context of 
the medical sciences that will increasingly depend on automatic processes and computations for data analysis and 
diagnostics.  
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