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Overview

Theme of the Lecture: There is a general

construction
Character map
b
HC*(H) i ) HC*(A)
H/_/ H/_/
HC™* for Hopf algebras HC™ for algebras

which accounts for many geometric constructions of
cyclic cocycles.

The index cocycles of the last lecture (analytic
constructions) tend to be exceptions.

Next Lecture: We shall show that the residue
cocycle is a Hopf cocycle.

Roughly speaking, to prove an index theorem is
to identify an index cocycle with an explicit Hopf
cocycle (say at the level of cohomology).



Review: Cyclic Theory
Recall that ¢: A®"" L Cisa cyclic n-cocycle if

o (p(aO’ (1], ey an) — (_1 )n(p(ana (10, e an_])
e bo(d’ ..., a™") =0, where

—o@(a® a'a?, ..., a""

+ ..

4+ (_1 )n—H (p(an—H (10, : an)
The formula

(o, ) =@, P,...,D)

determines a pairing
HC™(A) ® Ko(A) — C,

between cyclic cohomology (cyclic cocycles modulo
coboundaries) and K-theory.



Examples of Cyclic Cocycles

From Lecture 3 ...

g Lie algebra
gRA = A Action of g by derivations
T A—C Invariant trace : t(X(a)) =0

The homology of g with coefficients C is computed
from the ‘Chevalley-Eilenberg’ complex

g gAg e gAgAg e -
where

SX4 A AXp) =
D (DX XGIAX A AXA - AXGA - AX,

1<
Now, embed A"g into ®™g by total antisymmetrization.

XiA---AX, Z(—])GXG(” ® - Q Xgn)-
o



Proposition. The map from ®"g into Hom(A®", C)
defined by the formula

d)x@...@xn(ao, o, at) = T(aOX1 (al).. .Xn(a“)).
takes Lie algebra cycles to cyclic cocycles.

Proof of Cyclicity. Tricky. From
0= T(xn(a% (a) ... Xy (a“—‘)a“)>
- T(xn(aom (a') ... X1 (a™ )a“>
+) T(CLOX1 (@')... Xn(Xi(ah) ... Xny (a“_1)a“>
+ T(a0X1 (@")... Xn1(a™ )Xn(a“))

we get, for c € Ag, ¢ — A = (—1)" s, Where
ll)y]®...®yn_]((10, oaY) =v(a®Yi(ad) . Y (@ ha).

[]
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Proof that Coboundary is Zero. Easy. One has
b, = 0 for any Lie algebra chain c (not necessarily
a cycle). ]

Example. Let X; and X, be derivations on A, let t
be an invariant trace, and let

T(aOX1(a1)X2(aZ)) —T(aOXZ(a1)X1(aZ)).
One has
d)(a()) a]a aZ) o (I)(aza Cl], aO) — T(aOY(a1)az>>

where

Y = [X1,X;3] = —6(X1 /\Xz).
So if X; and X, are commuting derivations then ¢ is
a cyclic 2-cocycle.

(The irrational rotation algebra carries such a cyclic
2-cocycle.)



Index Theory

Y (D, A) = Abstract pseudodifferential operators.

Assume the zeta-type functions
((s) = Trace(T(I+ A)®)

have meromorphic extensions (as in the classical
case) and form

T(T) = orde]r(A) Resq—g (Trace(T(I + A)_S)>.

Suppose given D € D, D?=Aand D = (D‘L DO—).
If A C WYy(D,A) is comprised of even-order

operators commuting with D modulo lower order
terms then we get

Index. p: Ko(A) = Z.



Theorem (Connes and Moscovici). The formula

_ n+2k

> cwt(eaolD, a1™D,a?]*). .. [D, a"*A)

k>0

IS an index cocycle in the (b, B)-bicomplex. []

: : I

&% b ®° b ®?2 b
Hom(A® ,C) — Hom(A® ,C) — Hom(A® ,C) — Hom(A,C)

. | y .l
3 B 2 B
Hom(A® ,C) — Hom(A®  ,C) —— Hom(A,C)

. | .
B
Hom(A®2, C) —— Hom(A, C)

b

Hom(A, C)

The (b, B)-bicomplex.



Classical Case
M*m Spin Manifold

D Dirac Operator
T Y(M,A) - C Wodzicki Residue

A priori there are many terms in the C-M formula
(e.g. 8 for dim(M) = 4). However:

Theorem. In the classical case, the k # 0 terms in
the Connes-Moscovici formula vanish. []

Moreover:

Theorem. In the classical case

T(eaoD, a'l[D,a?]...[D,a"A™2)

= constant'J a’da’.. .da“/\ﬁ(l\/l).
M

[]

This follows from Getzler’s approach to the Atiyah
Singer Theorem.



Typical Case (Complexity Estimate)

In the simplest case of interest to Connes and
Moscovici one has

e [ C Diffeo™(R)

e A =C¥(R?) T (the crossed product algebra),
g(x,t) = (g(x), t+log(g’(x))).

oto
e D=| 9 (roughly speaking).
a2 Cax

A typical generator of A looks like f - g, and

D, f-g]l =f[D,g]+ [D,flg

2 terms 3 terms

The terms are of the form f - g, or worse, and (by my
rough count)

A f- gl =f1lA, gl + [A, flg

4 terms 9 terms

Thus [D,f - g]'!V has say 65 terms. The full CM
formula has > 500 terms!
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Bi-Algebras

We are going to generalize the construction of cyclic
cocycles from Lie algebra cycles ...

Definition. A bi-algebra is an associative algebra H
with unit, equipped with algebra homomorphisms

ATH-oHQH (comultiplication)
and

e:H—-C (co-unit)
such that the following diagrams commute:

e®1

H HH and HQH H
s | 182 sl e
HOH —— HOHRQIH H—— HOH
AR A

Co-associativity Co-unit Property
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Example. Let g be a Lie algebra and let J{ be its
enveloping algebra. For X € g define

AX)=X®1T+1T®X and ¢(X)=0.

Since for example A: g — g®g is a Lie algebra map
we obtain A: H — H ® K.

Example. Let G be a discrete group and H = CI[G].
Define A(g) =g®gand e(g) = 1.

Example. Let G be a group and let H = F(G) be a
suitable algebra of functions on G. Define

ATH-oHIH and e¢:H — C

by A(f)(g1,92) = f(g192) and e(f) = f(e).

Remark. On a finite group we can take ¥ = all
functions. On an algebraic group we can take F =
regular coordinate functions.

These will combine to form our main examples.
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Actions of Bi-Algebras
Sweedler Notation. Write Ah =) h; ® h,.

Example. With this notation,
(A®1)(AM) =) hy@hp®h,
and by co-associativity,

Zh]] ®h12®h2=Zh1 ® hy1 ® hy).

Definition. An action of H on an associative
algebra A is a unital homomorphism H — End¢(A)
for which

o h(ajaz) =) hy(ar)hy(ay).

Example. If h € H is group-like, meaning A(h) =
h ® h, then h acts as an automorphism. If h is
primitive, meaning A(h) = h® 1 + 1 ® h, then h
acts as a derivation.
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Example. If H{ is an enveloping algebra then from
AX)=X®1+1X, for X € g, we get

X(ab) = X(a)b + aX(b)

Thus actions of H correspond to actions of g by
derivations.

Example. If H = C[G] then actions of H
on A correspond to actions of G by algebra
automorphisms.

Example. Actions of F(G) correspond to ‘coactions’.
An important instance is A = B < G and

(think of A as functions a: G — B with twisted
convolution multiplication).

Remark. If G is abelian then
CIGl = F(G)  (Fourier duality).
Actions of H = F(G) correspond to actions of G.
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Construction of Bi-Algebras
G =G G

G finite
|dentify G/G, with G; and G;\G with G, to form
H=3F(G) = G, A =G xF(Gy).
There is a natural algebra homomorphism

H — End@(A).

If G, is normal then there is a natural coproduct on
H, assembled from the coproducts on F(G/G;) and

C[Gz]l
A(f - g2) = A(f) - A(ga).

The action of H on A is a bi-algebra action.

Amazing Fact. There is always a coproduct:

Alg2) =) d(9201) @ p(g1) - 02

g1

More on this matched pair construction next lecture.
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Antipodes
Definition. A Hopf algebra is a bi-algebra for which

there is a linear map S: H — H such that

D S(hiha=¢(h) =) hiS(hy),
for every h € JH. Terminology: S = Antipode.
Example. For enveloping algebras, S(X) = —X.
Example. For group algebras, S(g) = g~'.
Example. For F(G), S(f)(g) = f(g7").

Lemma. The antipode S is unique, supposing it
exists at all. []

Lemma. The antipode is anti-multiplicative and anti-
co-multiplicative:!

S(hk) =S(k)S(h) and A(S(h)) =) S(hy)®S(hy).

Warning. It is not true that S* = 1.

Lif that is a word.
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Invariant Traces

To construct cyclic cocycles from Lie algebra cycles
we also required a trace ...

Definition. A functional t: A — C is invariant if

T(h(a)) = ¢(h)T(a) Va € A,Yh € H.

Example.

h € H group-like = t(h(a)) =1(a)
h e H primitive = 1(h(a))=0

Example. Let A = C[G]. The canonical trace
T: C[G] — C,
T(f) = f(e),

IS invariant for the action of H = F(G),

17
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Cyclicity

Problem. When is t(a’h'(a')... h"(a™)) cyclic?

Take for example n = 1. We want to fill in the blank:

W o T(a0h1(a1))

?? 1(ad'h(a%)
And for n = 2,

hWeoh o ’t(aoh](a])hz(az))

??7???? & 1(a’h!(a®)h¥(ah))

Solution.
Forn =1: S(h')
Forn = 2: A(S(h)- (P ®1)

General case: A" '(S(h") - (M®®---®@h"® 1).
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Lemma. If the Hopt algebra A actson A and If T IS
Invariant then

t(h(a)b) = t(aS(h)(b)),

foreveryh e Hand a,b € A.

Proof. From h = ) hye(hy) (co-unit property) we
get

h(a)b=) hi(a)e(hy)b (co-unit)
=) hi(a)hy(S(he)(b)) (antipode)
= Z hi1(a)ha( (b)) (co-associativity)
- Z hi (aS(ha)( (action)

Taking traces we get

t(h(a)b) = ) t(hi(aS(hy)(b)))
=) e(hy)t(aS(hy)(b)) (invariance)

= 1(aS(h)(b)) (co-unit) ]
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Explanation: Cyclicity
We have

HEHOIHBEHOIHOIHSLS ... LS He--- 9K

and so A" '(h) € H®".

From the definition of action,
A" (h) o ft(aoh(a1 e a“))
Therefore
AT e @h"®1)
— T(GOS(h1)(h2(a1) . h“(a“_1)a“))
By the lemma and the trace property
AT e @h"®1)

— ’t(h1 (a®h?(a')... h“(a“_1)a“))
= T(a“h] (e n?(a)).. .h“(a“_1)).
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Cyclic Cohomology Again
A = Algebraover C,  C™ = Hom(A®"" C)

Define maps

§;: C* — C™ g: C— CV

v: Ct— C*
1i=0,...,n+1 i=1,..n
by the formulas
8 (a’, ..., a" ) =d(d’ ..., dd", ... a™ )
0 1 0 i—1 i —1
oid(a”,...,a" ) =d(a",...,a" ', 1,a"...,a"" )

Y(I)(aoa R an) — d)(ana (10, Tty an—1).

The §; and o; satisfy face-degeneracy relations, and
In addition

Y0i =0i 1Y  TOo = Onti
Y05 = 0j_1Y YO0 = OnY’
,YTL-H — 1

These relations define the cyclic category.
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Cyclic Objects

The complexes to compute cyclic conomology are
constructed from &, o and y. For example:

A= (=1
n+1
b=) (=15, B= (Z A‘) ony) (1= M),
1=0

on the object C™.

Definition. A cyclic object in the category of abelian
groups is a functor from the cyclic category to
abelian groups. Its cyclic cohomology is (for
example) the cohomology of the (b, B)-bicomplex
constructed as above.

Definition. The cyclic cohomology of a Hopf
algebra H for which S? = 1 is the cyclic cohomology
of the cyclic object obtained from the following
operators ...
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oM@ - h) =1h!' @ ---@h"
SihM®---9hM) =h'® - - @A ®---@h"
(M ®@ - @h)=h'® - - - h"®1

oW ® - 9h")=¢hh @ ---@hi®---®@h"
vh'®---@h) =A"(S(h) - (W®---@h"® 1)

Theorem (Connes and Moscovici). As long as
S? = 1 these formulas do indeed define a cyclic
object. ]

Definition. Let 7 be a Hopf algebra for which S? =
1. If H acts on an algebra A, and if T is an invariant
trace on A, then define

: HC*(H) —— HC*(A)
by the correspondence
hWMe - @h—1(a®h!(a)...h"(a")).
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Example

g Lie algebra
g ® A — A Action of g by derivations
T.A—C Invariant trace
H Enveloping algebra

Theorem. The Hopf algebra periodic cyclic coho-
mology of the enveloping algebra H is isomorphic
to the Lie algebra homology of g (with trivial
coefficients),

HPeven/odd(g_C) — Heven/odd(g) C))
In such a way that the characteristic map
: HP*(H) — HC*(A),

associates to the class of a Lie algebra cycle the
cyclic cocycle constructed at the beginning of the
lecture.
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Sketch of the Proof. We shall use the (b, B)-bicomplex.

Step 1. The inclusion A"g C ®"g C Q™H gives
Kernel(b) = A"g & Image(b).

(The definition of b does not invoke the Lie bracket
[, ]. In effect, we can assume g is abelian.)

Step 2. The operator B: @™ H — @™ 'H maps A'g
to A" 'g and coincides with the Chevalley-Eilenberg
boundary map. (A direct computation.)

Step 3. The result follows from the first two steps,
plus some bookkeeping. []

Remark. As Connes and Moscovici observe, the
same argument is used to compute HC*(C*®(M)).
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A First Generalization

Unfortunately, in important examples S? # 1.

Definition. A character of H is an algebra
homomorphism &: H — C.

Definition. A trace t: A — C is é-invariant if

forallh € H and a € A.

Lemma. If T is d-invariant then
t(h(a)b) = t(aSs(h)(b)),
where

Ss(h) =) 8(h1)S(ha). 0
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Theorem. Assume that S = 1. The twisted cyclic
operator

vih'® - - @h") =A"(Ss(hM")) (@ ---@h"® 1)

and the previous face and degeneracy operators
constitute a cyclic object. []

Definition. Denote by HC; (J() the associated cyclic
cohomology groups, and by

: HC:(H) — HC*(A)

the characteristic map associated to a d-invariant
trace.

Theorem. Let H be the enveloping algebra of g and
let & be a character of 3. Then SZ =1 and

Hpgven/odd(g_c ) — Heven/odd(g> Cé ) . [ ]
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Ultimate Generalization

It is to replace the trace property by a modular
condition:

Definition. A modular pair for a Hopf algebra H
consists of a character 6: H{ — C and a group-like
element u € H such that 6(u) = 1. The pair (5, u)
IS involutive if

S:=Ad(u): H — K.

The definition is suggested by the conditions

T(bu(a))
t(h(a)) = d(h)t(a)

on a linear functional T: A — C, which imply
t(h(a)b) = t(aSs(h)(b))

as before.
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Theorem. The amended formulas
by ® - @M =Mho - @h"ou)
and
yhW e - @h™) =A"1(S;(h)(®- - oh"®u)

determine a cyclic object. []

We obtain a characteristic map
' HC}(H) — HC*(A),

as before.

The present generalization treats the algebra and
co-algebra structures of H more symmetrically than
the previous generalization.

We shall consider examples in the next lecture (time
permitting), but in our main examples we shall have
u=1.
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