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Overview

Theme of the Lecture: There is a general
construction

for Hopf algebras

Character map

for algebras

which accounts for many geometric constructions of
cyclic cocycles.

The index cocycles of the last lecture (analytic
constructions) tend to be exceptions.

Next Lecture: We shall show that the residue
cocycle is a Hopf cocycle.

Roughly speaking, to prove an index theorem is
to identify an index cocycle with an explicit Hopf
cocycle (say at the level of cohomology).
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Review: Cyclic Theory
Recall that is a cyclic -cocycle if

, where

The formula

determines a pairing

between cyclic cohomology (cyclic cocycles modulo
coboundaries) and -theory.
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Examples of Cyclic Cocycles
From Lecture 3 . . .

Lie algebra
Action of by derivations

Invariant trace

The homology of with coefficients is computed
from the ‘Chevalley-Eilenberg’ complex

where

Now, embed into by total antisymmetrization.
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Proposition. The map from into Hom
defined by the formula

takes Lie algebra cycles to cyclic cocycles.

Proof of Cyclicity. Tricky. From

we get, for , , where
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Proof that Coboundary is Zero. Easy. One has
for any Lie algebra chain (not necessarily

a cycle).

Example. Let and be derivations on , let
be an invariant trace, and let

One has

where

So if and are commuting derivations then is
a cyclic -cocycle.

(The irrational rotation algebra carries such a cyclic
-cocycle.)
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Index Theory

Abstract pseudodifferential operators.

Assume the zeta-type functions

Trace

have meromorphic extensions (as in the classical
case) and form

order
Res Trace

Suppose given , and .

If is comprised of even-order
operators commuting with modulo lower order
terms then we get

Index
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Theorem (Connes and Moscovici). The formula

is an index cocycle in the -bicomplex.

... ... ... ...

Hom Hom Hom Hom

Hom Hom Hom

Hom Hom

Hom

The -bicomplex.
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Classical Case
Spin Manifold
Dirac Operator

Wodzicki Residue

A priori there are many terms in the C-M formula
(e.g. 8 for dim ). However:

Theorem. In the classical case, the terms in
the Connes-Moscovici formula vanish.

Moreover:

Theorem. In the classical case

constant

This follows from Getzler’s approach to the Atiyah
Singer Theorem.
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Typical Case (Complexity Estimate)
In the simplest case of interest to Connes and
Moscovici one has

Diffeo

(the crossed product algebra),
log .

(roughly speaking).

A typical generator of looks like , and

2 terms 3 terms

The terms are of the form , or worse, and (by my
rough count)

4 terms 9 terms

Thus has say 65 terms. The full CM
formula has terms!
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Bi-Algebras

We are going to generalize the construction of cyclic
cocycles from Lie algebra cycles . . .

Definition. A bi-algebra is an associative algebra
with unit, equipped with algebra homomorphisms

(comultiplication)

and
(co-unit)

such that the following diagrams commute:

Co-associativity

and

Co-unit Property
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Example. Let be a Lie algebra and let be its
enveloping algebra. For define

and

Since for example is a Lie algebra map
we obtain .

Example. Let be a discrete group and .
Define and .

Example. Let be a group and let be a
suitable algebra of functions on . Define

and

by and .

Remark. On a finite group we can take all
functions. On an algebraic group we can take
regular coordinate functions.

These will combine to form our main examples.
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Actions of Bi-Algebras
Sweedler Notation. Write .

Example.With this notation,

and by co-associativity,

Definition. An action of on an associative
algebra is a unital homomorphism End
for which

, and

.

Example. If is group-like, meaning
, then acts as an automorphism. If is

primitive, meaning , then
acts as a derivation.
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Example. If is an enveloping algebra then from
, for , we get

Thus actions of correspond to actions of by
derivations.

Example. If then actions of
on correspond to actions of by algebra
automorphisms.

Example.Actions of correspond to ‘coactions’.
An important instance is and

(think of as functions with twisted
convolution multiplication).

Remark. If is abelian then

(Fourier duality).

Actions of correspond to actions of .

14



Construction of Bi-Algebras

finite

Identify with and with to form

There is a natural algebra homomorphism

End

If is normal then there is a natural coproduct on
, assembled from the coproducts on and

:

The action of on is a bi-algebra action.

Amazing Fact. There is always a coproduct:

More on thismatched pair construction next lecture.
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Antipodes
Definition. A Hopf algebra is a bi-algebra for which
there is a linear map such that

for every . Terminology: = Antipode.

Example. For enveloping algebras, .

Example. For group algebras, .

Example. For , .

Lemma. The antipode is unique, supposing it
exists at all.

Lemma. The antipode is anti-multiplicative and anti-
co-multiplicative:1

and

Warning. It is not true that .
1If that is a word.
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Invariant Traces

To construct cyclic cocycles from Lie algebra cycles
we also required a trace . . .

Definition. A functional is invariant if

Example.

group-like
primitive

Example. Let . The canonical trace
,

is invariant for the action of ,
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Cyclicity

Problem. When is cyclic?

Take for example . We want to fill in the blank:

??

And for ,

??????

Solution.

For :

For :

General case: .
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Lemma. If the Hopf algebra acts on and if is
invariant then

for every and .

Proof. From (co-unit property) we
get

(co-unit)

(antipode)

(co-associativity)

(action)

Taking traces we get

(invariance)

(co-unit)
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Explanation: Cyclicity
We have

and so .

From the definition of action,

Therefore

By the lemma and the trace property
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Cyclic Cohomology Again
Algebra over , Hom

Define maps

by the formulas

The and satisfy face-degeneracy relations, and
in addition

These relations define the cyclic category .
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Cyclic Objects

The complexes to compute cyclic cohomology are
constructed from , and . For example:

on the object .

Definition. A cyclic object in the category of abelian
groups is a functor from the cyclic category to
abelian groups. Its cyclic cohomology is (for
example) the cohomology of the -bicomplex
constructed as above.

Definition. The cyclic cohomology of a Hopf
algebra for which is the cyclic cohomology
of the cyclic object obtained from the following
operators . . .
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Theorem (Connes and Moscovici). As long as
these formulas do indeed define a cyclic

object.

Definition. Let be a Hopf algebra for which
. If acts on an algebra , and if is an invariant
trace on , then define

by the correspondence
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Example

Lie algebra
Action of by derivations

Invariant trace
Enveloping algebra

Theorem. The Hopf algebra periodic cyclic coho-
mology of the enveloping algebra is isomorphic
to the Lie algebra homology of (with trivial
coefficients),

even/odd
even/odd

in such a way that the characteristic map

associates to the class of a Lie algebra cycle the
cyclic cocycle constructed at the beginning of the
lecture.
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Sketch of the Proof. We shall use the -bicomplex.

Step 1. The inclusion gives

Kernel Image

(The definition of does not invoke the Lie bracket
. In effect, we can assume is abelian.)

Step 2. The operator maps
to and coincides with the Chevalley-Eilenberg
boundary map. (A direct computation.)

Step 3. The result follows from the first two steps,
plus some bookkeeping.

Remark. As Connes and Moscovici observe, the
same argument is used to compute .
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A First Generalization

Unfortunately, in important examples .

Definition. A character of is an algebra
homomorphism .

Definition. A trace is -invariant if

for all and .

Lemma. If is -invariant then

where
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Theorem. Assume that . The twisted cyclic
operator

and the previous face and degeneracy operators
constitute a cyclic object.

Definition.Denote by the associated cyclic
cohomology groups, and by

the characteristic map associated to a -invariant
trace.

Theorem. Let be the enveloping algebra of and
let be a character of . Then and

even/odd
even/odd
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Ultimate Generalization

It is to replace the trace property by a modular
condition:

Definition. A modular pair for a Hopf algebra
consists of a character and a group-like
element such that . The pair
is involutive if

Ad

The definition is suggested by the conditions

on a linear functional , which imply

as before.
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Theorem. The amended formulas

and

determine a cyclic object.

We obtain a characteristic map

as before.

The present generalization treats the algebra and
co-algebra structures of more symmetrically than
the previous generalization.

We shall consider examples in the next lecture (time
permitting), but in our main examples we shall have

.
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