
A NOVICE’S GUIDE TO SU(2)

ANDREW BAKER

These informal notes provide a brief introduction to the Lie group SU(2). Given the important
and fundamental rôle that SU(2) and its Lie algebra has in Lie theory and applications to Physics
and other disciplines, it is natural to introduce many ideas of Lie theory through this example,
making them as concrete as possible. We hope the interested reader will be motivated to read
more complete treatments of the subject, such as those in the bibliography.

1. Basic definitions

Let M2(C) be the set of 2×2 complex matrices. Since M2(C) ∼= C4 ∼= R8, it inherits a natural
structure of a metric space. The 2× 2 special unitary group is

SU(2) = {A ∈ M2(C) : A∗A = I = AA∗, detA = 1} ⊂ M2(C),

viewed as a subspace which is actually a topological subgroup.

Theorem 1.1. SU(2) ⊂ C4 ∼= R8 is the zero-set of the following system of polynomial equations
in the real and imaginary parts: of a, b, c, d

(1.1)





|a|2 + |b|2 − 1 = 0,

|c|2 + |d|2 − 1 = 0,

ac + bd = 0,

ad− bc− 1 = 0.

The derivative matrix of this system has rank 5 at each point of SU(2). Hence SU(2) is a 3-
dimensional smooth submanifold of C4 ∼= R8.
Each of the multiplication and inverse maps

µ : SU(2)× SU(2) −→ SU(2), χ : SU(2) −→ SU(2),

is smooth. Hence, SU(2) is a Lie group.

The map

SU(2) −→ S3;
[
a b

c d

]
7−→ (a, b),

can be shown to be a diffeomorphism onto the 3-sphere

S3 = {z ∈ C2 ∼= R4 : |z| = 1}.
Let

T =
{[

α 0
0 α

]
: |α| = 1

}
⊂ SU(2),

which is an abelian subgroup of SU(2). Let

NSU(2)(T ) = {P ∈ SU(2) : PTP ∗ = T}
be the normalizer of T , i.e., the largest subgroup of SU(2) containing T as a normal subgroup.
The Weyl group of T in SU(2) is the finite quotient group

WSU(2)(T ) = NSU(2)(T )/T.
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Proposition 1.2. T is a maximal abelian subgroup for which

SU(2) =
⋃

P∈SU(2)

PTP ∗; NSU(2)(T ) = T ∪
[

0 1
−1 0

]
T (disjoint union); WSU(2)(T ) ∼= Z/2.

Notice that for any conjugate PTP ∗ of T with P ∈ SU(2) we have

WSU(2)(PTP ∗) = NSU(2)(PTP ∗)/PTP ∗ ∼= Z/2,

so up to a group isomorphism the Weyl group is an invariant of the group SU(2). Also, the
Weyl group WSU(2)(T ) acts on T by

PT ·
[
α 0
0 α

]
= P

[
α 0
0 α

]
P ∗.

In particular, [
0 1
−1 0

]
T ·

[
α 0
0 α

]
=

[
α 0
0 α

]
.

2. The Lie algebra

To give an explicit chart for SU(2) about the identity I, we proceed as follows. In (1.1), take
the variables

a = 1 + δa, b = δb, c = δc, d = 1 + δd;

then working order 1 in δa, δb, δc, δd, Equation (1.1) gives




δa + δa
.= 0

δd + δd
.= 0

δc + δb
.= 0

δa + δd
.= 0

=⇒





δa
.= −δa

δd
.= −δd

δc
.= δb

δd
.= −δa

and so we have 



δa = iδt

δb = δu + iδv

δc = −δu + iδv

δd = −iδt

(δt, δu, δv ∈ R).

This suggest that the tangent space TISU(2) to SU(2) at I is the set of all skew-hermitian
matrices of trace 0,

Sk-H0(2) = {A ∈ M2(C) : A∗ = −A, trA = 0},
which is a 3-dimensional real vector space with basis consisting of the Pauli matrices

R =
[
i 0
0 −i

]
, P =

[
0 1
−1 0

]
, Q =

[
0 i

i 0

]
.

We can define an exponential map

exp: Sk-H0(2) −→ SU(2); exp(H) =
∑

k>0

1
k!

Hk,

since it is easy to see that this series converges absolutely with respect to the supremum (or
operator) norm

‖H‖ = sup
|x|=1

|Hx|.
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The fact that exp(H) lies in SU(2) is a consequence of the relations

exp(H)∗ = (
∑

k>0

1
k!

Hk)∗

=
∑

k>0

1
k!

H∗k

=
∑

k>0

1
k!

(−H)k

= exp(−H) = exp(H)−1.

Theorem 2.1. The exponential map exp: Sk-H0(2) −→ SU(2) is smooth and surjective. More-
over, exp(H) = I if and only if

H = Q

[
2πin 0

0 −2πin

]
Q∗ (n ∈ Z, Q ∈ SU(2)).

Hence, there is an open subset U ⊂ Sk-H0(2) containing O, such that exp: U −→ exp(U) is a
diffeomorphism.

To calculate exp(H) in practise, we first diagonalise H by finding a Q ∈ SU(2) such that

QHQ∗ =
[
is 0
0 −is

]
(s ∈ R).

Then

exp(H) = Q∗ (exp(QHQ∗))Q = Q∗
[
eis 0
0 e−is

]
Q.

In particular,

exp(tR) =
[
eit 0
0 e−it

]
, exp(tP ) =

[
cos t sin t

− sin t cos t

]
, exp(tR) =

[
cos t i sin t

i sin t cos t

]
.

The product AB of two traceless skew-Hermitian matrices A, B is not skew-Hermitian, how-
ever, there is a way to ‘multiply’ them to obtain another skew-Hermitian matrix, namely by
forming their commutator

[A,B] = AB −BA,

which is both skew-Hermitian and traceless. To see how this connects with the group structure
of SU(2), let 0 6= s, t ∈ R and consider

exp(tA) exp(sB) exp(tA)−1 = exp(tA) exp(sB) exp(−tA).

We find
d
d s |s=0

d
d t |t=0

exp(tA) exp(sB) exp(−tA) =
d
d s |s=0

(A exp(sB)− exp(sB)A)

= AB −BA = [A,B].(2.1)

So this bracket arises from the conjugation action of SU(2) on itself. The structure we get on
the set of traceless skew-Hermitian matrices is that of a Lie algebra. This consists of a vector
space g over a field k, equipped with a k-bilinear map [ , ] : g× g −→ g such that for x, y, z ∈ g,

[x, y] = −[y, x],(skew symmetry)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.(Jacobi identity)

Such a structure is called a k-Lie algebra. The following examples are basic.

• For a k-algebra A, set g = A and [x, y] = xy − yx.
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• For any k-vector space V , set g = V and [x, y] = 0; this is gives a trivial or abelian Lie
algebra.

• The R-Lie algebra associated to SU(2) is denoted su(2). There is a close connection
between the representation theory of SU(2) and that of su(2).

• Take g = R3 with standard basis i, j, k and

[i, j] = k, [j, k] = i, [k, i] = j.

Then of course [x, y] = x×y. It turns out that this R-Lie algebra is isomorphic to su(2).

3. The flag space

The orbit space SU(2)/T is often called the flag space of SU(2). There is a smooth quotient
map q : SU(2) −→ SU(2)/T . Let CP1 denote the 1-point compactification of C, i.e., the Riemann
sphere C ∪ {∞} ∼= S2. There is a smooth mapping

ϕ : SU(2) −→ CP1;
[
a b

c d

]
7−→

{
c/a if a 6= 0,

∞ if a = 0.

If A ∈ T and B ∈ SU(2), then ϕ(BA) = ϕ(B), giving a factorisation ϕ = ϕ ◦ q through
a continuous bijection ϕ : SU(2)/T −→ CP1, which is a actually a diffeomorphism. Hence,
SU(2)/T ∼= CP1. The associated map S3 −→ S2 is the famous Hopf map for which inverse
images of points are pairwise linked circles.

Notice that CP1 has a natural complex structure, whereas SU(2)/T only appears to be a
real manifold. The explanation of this involves the complexification of SU(2), namely SL2(C).
In fact SU(2)/T ∼= SL2(C)/B where B ⊂ SL2(C)/B is the Borel subgroup of upper triangular
matrices which is a complex Lie subgroup, hence the quotient space is a complex manifold.

4. Representation theory

In this section we assume that G is a Lie group (possibly complex) and g is its Lie algebra,
i.e., g = TIG, given a Lie bracket structure defined using an exponential map exp: TIG −→ G

as in Equation (2.1). (If G is complex, then g is a complex Lie algebra.) Let k = R,C and let
V be a k-vector space of dimension d. We write gl(V ) for the Lie algebra of k-linear maps with
bracket defined by

[A,B] = AB −BA.

Definition 4.1. Let R : G −→ GL(V ) be a homomorphism which is an analytic map of mani-
folds. Then R is a representation of G in V .

Definition 4.2. A k-linear map r : g −→ gl(V ) is a representation of g in V if

r([x, y]) = [r(x), r(y)] = r(x)r(y)− r(y)r(x).

We usually write A · v = R(A)(v) and a · v = r(a)(v).
Given such a representation R, then we can obtain a representation of g as follows. For a ∈ g

and v ∈ V , define

(4.1) a · v =
d
d t |t=0

exp(t)(v) = lim
t−→0

1
t

(exp(ta)(v)− v) .

Using Equation (2.1) we find that r is a representation of g. In fact, we can also go the other
way, provided certain topological restrictions on G are satisfied. For SU(2), they always are.

If we take a basis v1, . . . , vd for V , then we can express elements of GL(V ) in terms of matrices,
i.e., elements of the general linear group GLd(k). Similarly, a representation of g takes values
in gld(k), the Lie algebra of d× d matrices with entries in k.
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5. Representations of SU(2)

Now will study complex representations of SU(2). First note that by the remarks in Section 4,
we may as well consider its (real) Lie algebra su(2). But a complex representation must factor
through the complexification

su(2) −→ su(2)⊗ C −→ sl2(C) = sl2.

Hence we need only consider complex representations of the latter.
The following elements form a C-basis for sl2,

e =
[
0 1
0 0

]
, h =

[
1 0
0 −1

]
, f =

[
0 0
1 0

]
.

We have the Lie brackets

(5.1) [h, e] = 2e, [h, f ] = −2f, [e, f ] = h,

together with the trivial brackets [h, h] = [e, e] = [f, f ] = 0. The subalgebra generated by h, e

is called a Borel subalgebra and is denoted b and contains the Cartan algebra h generated by h.
Let h∗ = HomC(h,C) be the dual of h.

Let r : sl2 −→ gl(V ) be a complex representation of sl2.

Definition 5.1. Let 0 6= w ∈ V . Then w is a weight vector of weight λ ∈ h∗ if

h · w = λ(h)w.

It is a highest (resp. lowest) weight vector if it also satisfies

e · w = 0 (resp. f · w = 0).

Theorem 5.2. Let r : sl2 −→ gl(V ) be a non-trivial finite dimensional complex representation.

(a) There is highest (resp. lowest) weight vector in V .
(b) If r is an irreducible representation, then any highest (resp. lowest) weight vector w

generates V over sl2, i.e., V is spanned as a C-vector space by the elements ak · · · a1 ·w
(aj ∈ sl2).

(c) If r is an irreducible representation, and w is a highest weight vector with eigenvalue `,
then 0 6 ` ∈ Z. Moreover, the elements

vk (k = −`,−` + 2, . . . , `− 2, `)

are the only weight vectors and satisfy

v` = w, vk = f · vk+2.

Proof. We only prove (a), the remaining proofs can be found in Serre’s book [5].
(a) The element h acts on V as a linear transformation and must therefore have an eigenvector
w0 with eigenvalue `0 say, hence h · v0 = `0v0. We can define a corresponding λ0 ∈ h∗ by
λ0(th) = t`0.

Computing Lie brackets, we obtain

h · e · v0 = e · h · v0 + [h, e] · v0 = `0e · v0 + 2e · v0,

h · f · v0 = f · h · v0 + [h, f ] · v0 = `0e · v0 − 2e · v0,

and so v1 = e · v0 (resp. v−1 = f · v0) is either an eigenvector with eigenvalue `1 = `0 + 2 (resp.
`−1 = `1 − 2) or 0. But as eigenvectors of h for distinct eigenvalues are linearly independent, if
we repeat this procedure we will eventually obtain a highest weight vector vm say for eigenvalue
`m and a lowest weight vector v−n for eigenvalue `−n. At each stage we can define λj ∈ h∗ by

λj(th) = t`j . ¤



6 ANDREW BAKER

Example 5.3. If we take one dimensional representation V = C in which e · 1 = f · 1 = h · 1,
then we have ` = 0. This is the 1-dimensional trivial representation.

Example 5.4. Let V = C2 with each element of sl2 acting as the corresponding 2× 2 matrix,
[
a b

c d

]
· (x, y) = (ax + by, cx + dy).

Then we have ` = 1 with v1 = e1 and v1 = e2, the standard basis vectors. This is the natural
representation.

Example 5.5. Let P = C[u, v] be the set of all polynomials in u, v and Pk the set of all
homogeneous polynomials of degree k. Then if we set

[
a b

c d

]
· f(u, v) = f(au + bv, cu + dv),

this defines an action of sl2 on P, which preserves each Pk. It can be shown that P` is the
irreducible representation with highest weight `.

6. The adjoint representation

We now consider the most ‘natural’ representation of the Lie algebra sl2. Namely define
ad: sl2 −→ gl(sl2), where

ad(x)(y) = [x, y].

That this is a representation follows from the Jacobi identity. It is easily checked that ` = 2,
v2 = e, v0 = h and v−2 = f .

Such a representation

ad: g −→ gl(g); ad(x)(y) = [x, y]

exists for any Lie algebra g. Non-zero vectors w ∈ g such that there is some λ ∈ h∗ with

h · w = [h,w] = λ(h)w (h ∈ h)

are called root vectors and the functional λ is called a root. There is a root space decomposition

g = g0 ⊕
⊕

α6=0

gα

where x ∈ gα if and only if

h · x = [h, x] = α(h)x (h ∈ h).

Moreover, if x ∈ gα and y ∈ gβ, then [x, y] ∈ gα+β. For (semi)simple Lie algebras such as sl2,
g0 = h.

The adjoint representation comes from a 3-dimensional real representation of the group SU(2).
For if we identify the Lie algebra su(2) with the 3-dimensional real vector space Sk-H0(2), SU(2)
acts linearly by Hermitian conjugation, i.e., A ∈ SU(2) acts by sending H to AHA∗. If we choose
as a basis Sk-H0(2) the vectors (1/

√
2)R, (1/

√
2)P, (1/

√
2)Q, then the linear transformation

induced by A has a 3 × 3 matrix which is orthogonal and has determinant 1. There is a
corresponding group homomorphism SU(2) −→ SO(3) which is surjective and has kernel {±I}.
There is an associated isomorphism of real Lie algebras. This double covering homomorphism
is related to the idea of spinors.
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7. The invariant inner product

For X, Y ∈ su(2) let (X, Y ) = − tr(XY ). Then ( , ) is a real symmetric bilinear form and in
fact is positive definite. The standard basis elements ih, (e− f), i(e + f) satisfy

(ih, ih) = (e− f, e− f) = (i(e + f), i(e + f)) = 2.

It is also invariant in the sense that

([Z, X], Y ) + (X, [Z, Y ]) = 0.

The element ih is the coroot associated to the natural positive simple root α given by

[h, e] = 2e, [h, f ] = −2f.

8. Bott–Borel–Weil theory

Let K denote a compact, connected, simply connected, (semi)-simple Lie group and G its
complexification. Thus the (real) Lie algebra k has complexification k ⊗ C = g. A maximal
solvable subgroup B ⊂ G is called a Borel subgroup; a closed subgroup P ⊂ G containing a
Borel subgroup is called a parabolic subgroup. Such a B contains a maximal complex torus
D ∼= (C×)r, where r is the rank of K and G. Notice that K ∩ B = T , where T ∼= Tr is a
maximal (real) torus for K. We have K/T ∼= G/B, hence the latter is compact, and the former
is a complex manifold; more generally, if P is any parabolic, then K/P ∩K ∼= G/P and these
remarks are true. In fact, parabolic subgroups are characterised by the fact that the quotient
G/P is compact and Kähler.

Let V be a finite dimensional (complex) representation of G, given an inner product so that
the restriction to K is unitary. Then we can consider the projectivisation of V , CP(V ). This is
the space of lines in V , which can be expressed as

CP(V ) = (V0)/C×,

where V0 = V − {0}. Given a basis for V , we have an equivalence CP(V ) ∼= CPdim V−1 and see
that CP(V ) has a complex structure. The representation gives rise to actions of K and G on
CP(V ).

Given a line [v] ∈ CP(V ), we may consider the orbits K · [v] and G · [v], which in general will
be different.

A non-zero vector v ∈ V is called a weight vector for the maximal torus T ⊂ K (respectively
D ⊂ G) if

z · v = λ(z)v (z ∈ T or z ∈ D),

where λ(z) ∈ C×. It is easily verified that the function λ : T −→ C× (or λ : D −→ C×) is
a continuous homomorphism, called the weight associated to v. Notice that the line [v] is
stabilized by T (or D), hence there is a surjection

K/T −→ K · [v] (or G/D −→ G · [v]).

A weight vector is a highest weight vector for the Borel subgroup B if [v] is stabilized by B;
equivalently, the weight λ : D −→ C× extends to a continuous homomorphism λ : B −→ C×.

We will refer to the line [v] spanned by a (highest) weight vector v as a (highest) weight ray.

Theorem 8.1. Let V be an irreducible representation of G.

(a) If [v] ∈ CP(V ) is a highest weight ray, the orbits K · [v] and G · [v], hence are compact
submanifolds of CP(V ). Moreover, the stabilizer of [v] in G is a parabolic subgroup P

and then
K/P[v] ∩K ∼= G/P ∼= K · [v] = G · [v].

Thus, these orbits are compact Kähler submanifolds of CP(V ).
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(b) Let [v] ∈ CP(V ) be a weight ray for some maximal torus T ⊂ K, satisfying the following
condition:

(*) for each root α of K with respect to T , if Tα stabilizes the vector v, then so does
SU(2)α.

Then the orbit K · [v] is a compact symplectic submanifold of CP(V ) which is only a
Kähler submanifold if [v] is a highest weight ray.

(c) The only symplectic orbits K · [v] are those described in part (b).

In this Theorem, the root α has an associated subgroup SU(2)α ⊂ K isomorphic to SU(2)
and having maximal torus Tα = T ∩ SU(2)α.

Notice also that if P stabilizes a ray [v], then the weight λ : D −→ C× extends to a homo-
morphism λ : P −→ C×.

Given the irreducible representation V of G and hence K, we can actually recover V from
G/P , where P is the parabolic subgroup of G stabilizing a highest weight ray [v] ∈ CP(V ), with
weight λ. We see this as follows. First take the dual of V , V ∗, which is a G representation with
action

(g · f)(x) = f(g−1 · x) (g ∈ G, f ∈ V ∗, x ∈ V ).

Let f be a highest weight vector for V ∗ with respect to B, and let µ be the weight associated
to this. In fact, µ−1 is a lowest weight for V .

Since P acts trivially on [v], the weight λ extends to a homomorphism λ : P −→ C×. Similarly,
there are extensions of µ−1 and µ to homomorphisms P −→ C×.

We can form a line bundle
ξµ = G×

P
Cµ −→ G/P,

where Cµ denotes C with P acting by

p · z = µ(p)z.

The projection map is G-equivariant making this into a homogeneous holomorphic line bundle.
Let Γhol(ξµ, G/P ) denote the space of global holomorphic sections of ξµ.

Theorem 8.2. There is an isomorphism of G-modules

Γhol(ξµ, G/P ) ∼= V,

where given a section s : G/P −→ G×P Cµ we set

g · s(xP ) = gs(g−1xP ).
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